• Title/Summary/Keyword: greenhouse soil

Search Result 895, Processing Time 0.03 seconds

The Relevance of Soil N2O Emissions Measured by a Closed Chamber Technique on the Physico-chemical Soil Parameters (Closed chamber를 이용한 토양 N2O 배출량과 주요 토양 인자들과의 상관성)

  • Kim Deug-Soo;Oh Jin Man
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.6
    • /
    • pp.749-758
    • /
    • 2004
  • Nitrous oxide ($N_2$O) has been known as an important trace gas due to the greenhouse gas and the major source of stratospheric oxide of nitrogen (NO). Soil is the major source of $N_2$O in nature. The physicochemical characteristics of soils affect the emission of $N_2$O from soil. These physicochemical parameters are soil moisture, soil temperature, and soil N content. Since these parameters are correlated to the flux of $N_2$O from soil individually and compositely, there still remain many unknowns in the mechanism to produce $N_2$O in soil and the roles of such physicochemical parameters which affect the soil $N_2$O emission. Soil $N_2$O fluxes were measured at different levels in water filled pore space (WFPS), soil temperature and soil N contents from the same amounts of soils which were sampled from agriculturally managed upland field in a depth of ~30 cm at Kunsan. The soil $N_2$O flux measurements were conducted in a laboratory with a closed flux chamber system. The optimum soil moisture and soil temperature were observed at 60% of WFPS and ~13$^{\circ}C$. The soil $N_2$O flux increased as soil N contents increases during the whole experimental hours (up to 48 hours). However, average $N_2$O flux decreased after ~30 hours when organic carbon was mixed with nitrogen in the sample soils. It is suggested that organic carbon could be important for the emission of $N_2$O, and that the ratio of N to C needs to be identified in the process of $N_2$O soil emission.

A Development of Automation system and a way to use Solar Energy System Efficiently in Greenhouse(2) - Study on improvement of growth and yield of a cucumber in soil heating - (시설원예 태양열 시스템의 효율적 이용과 자동화 장치개발(2) -지중가온에 의한 오이 생육 및 수량성 향상에 관한 연구-)

  • 김진현;오중열;구건효;김태욱
    • Journal of Bio-Environment Control
    • /
    • v.7 no.1
    • /
    • pp.25-33
    • /
    • 1998
  • Root zone temperature have influenced on protected cultivation in winter season. Especially root zone temperature is acted on limiting factor in crop cultivation. This study was conducted to obtain optimum temperature of root zone in Protected cultivation Root zone was warmed by heated water($28^{\circ}C$) flowing through the PPC pipe(${\phi}15$) buried depth 40 cm. And the flowing water was heated by solar system. Minimum air temperature during night time was set at $14^{\circ}C$ and maximum air temperature during day time was set at $28~30^{\circ}C$ the growing period of cucumber was from Nov. 6, 1996 to Jan. 30, 1997. The results are summarized as follows. 1. Average soil temperature at 15~20 cm depth was $22^{\circ}C$ at warming plots, $17~18^{\circ}C$ at non-warming plots 2. Early growth in leaf length, stem diameter, number of leaves and leaf area for 30 days after planting were accelerated by root zone warming. Especially, the grawing rate of soil warming plots was higher 27% in leaf length, 51% in leaf number, 150% in leaf area than non-warming Plots. Above-ground and underground part of warming plots was higher 117%, 56% than non-warming plots. 3. In total yield analysis, number of fruits were 614 in soil warming and 313 in non-warming plots. In the result, total yield of soil warming plots was increased with 196% than non-warming plots. 3. In total yield analysis. number of fruits were 614 in soil warming and 313 in non-warming plots. In the result. total yield of soil warming plots was increased with 196% than non-warming plots.

  • PDF

Effect of Application Rate of Composted Animal Manure on Nitrous Oxide Emission from Upland Soil Supporting for Sweet potato (고구마 재배 밭토양에서 가축분퇴비의 시용량이 아산화질소 발생에 미치는 영향)

  • Kim, Sung Un;Ruangcharus, Chuanpit;Lee, Hyun Ho;Park, Hye Jin;Hong, Chang Oh
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.3
    • /
    • pp.172-178
    • /
    • 2018
  • BACKGROUND: Composted animal manure applied to the arable soil for improving soil quality and enhancing crop productivity causes greenhouse gas emissions such as nitrous oxide ($N_2O$) by processes of nitrification and denitrification. However, little studies have been conducted on determining effect of application ratio of composted animal manure on $N_2O$ emission rate and its annual emission pattern from upland soil in South Korea. Therefore, this study was conducted to determine $N_2O$ emission rate and its annual emission pattern from upland soil supporting for sweet potato. METHODS AND RESULTS: Composted animal manure was applied at the ratio of 0, 10, and 20 Mg/ha to an upland soil supporting for sweet potato (Ipomoea batatas). Nitrous oxide emission was examined during growing season and non-growing season from May 2016 through May 2017. Daily $N_2O$ fluxes showed peaks right after applications of composted animal manure and inorganic nitrogen fertilizer. Precipitation and soil water content affected daily $N_2O$ flux during non-growing season. Especially, $N_2O$ flux was strongly associated with water filled pore space (WFPS). We assumed that the majority of $N_2O$ measured during growing season of sweet potato was produced from nitrification and subsequent denitrification. Annual cumulative $N_2O$ emission rate significantly increased with increasing application ratio of composted animal manure. It increased to 12.0 kg/ha/yr from 8.73 kg/ha/yr at control with 10 Mg/ha of composted animal manure and to 14.0 kg/ha/yr of $N_2O$ emission with 20 Mg/ha of the manure. CONCLUSION: To reduce $N_2O$ emission from arable soil, further research on developing management strategy associated with use of the composted animal manure and soil moisture is needed.

Allelopathic and Autotoxic Effects of Alfalfa Plant and Soil Extracts

  • Chon, Sang-Uk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.1
    • /
    • pp.7-11
    • /
    • 2004
  • Alfalfa (Medicago sativa L.) plants have been reported to be autotoxic as well as allelopathic. Laboratory and greenhouse experiments through petri-dish and pot test were conducted to determine autotoxic effects of alfalfa leaf and soil extracts on the germination or early seedling growth of alfalfa, and to evaluate allelopathic effects of alfalfa leaf residues on alfalfa, barnyard grass, com, eclipta and soybean. Alfalfa seed germination was delayed depending on aqueous extract concentration, with no difference in final germination after 48 hours. Alfalfa root length was more sensitive to the autotoxic chemicals from leaf extracts than was germination or shoot length. Root growth of alfalfa was significantly inhibited at extract concentration of more than 1 g dry tissue/L (g $\textrm{L}^{-1}$). Hypocotyl growth, however, was not affected by all the concentrations of leaf extracts. Soil extracts from 4-yr-old alfalfa stand significantly reduced alfalfa root length by 66%, while soil extracts from 0,1, and 3yr-old stand stimulated root length up to 14-32% over the control. Residue incorporation with dry matters of alfalfa leaf at 100 g $\textrm{kg}^{-1}$ reduced seedling length of several crop and weed species, ranging from 53 to 87% inhibition. Addition of nutrient solution into alfalfa leaf extracts alleviated alfalfa autotoxic effect. This result indicates alfalfa leaf and soil extracts or residues could exert autotoxic as well as allelopathic substances into soil environments during and after establishment.

Cultural and Rainfall Factors Involved in Disease Development of Fusarium Wilt of Sweet Potato

  • Lee, Yong-Hwan;Cha, Kwang-Hong;Lee, Doo-Goo;Shim, Hyeong-Kwon;Ko, Sug-Ju;Park, In-Jin;Yang, Kwang-Yeol
    • The Plant Pathology Journal
    • /
    • v.20 no.2
    • /
    • pp.92-96
    • /
    • 2004
  • Environmental factors such as soil moisture, land management, and weather conditions affecting Fusarium wilt of sweet potato were investigated in major sweet potato cultivation regions in Korea. Fusarium wilt occurred mainly in reclaimed terracing lands, which are flattened and located in hilly to mountainous areas at the base of the mountain, in early seasonal cultivation regions. Disease severity was lower in reclaimed fields with natural slope. The development of Fusarium wilt in the fields was highly correlated with precipitation during planting period (r=-0.96**). Fusarium wilt was more severe in fields with less than 20 cm of available soil depth than in fields with over 20 cm of available soil depth. Greenhouse studies were consistent with field studies that less soil moisture content caused severe Fusarium wilt of sweet potato. These results indicate that low rainfall and moisture of soil with low effective soil depth during planting period are important environmental factors influencing the development of Fusarium wilt.

Germination and Early Growth Characteristics of Pennisetum alopecuroides, Phragmites communis, and Miscanthus sinensis According to the Seeding Methods (파종방법에 따른 수크령, 갈대, 억새의 발아 및 초기생장 특성)

  • Cho, Yong-Hyeon;Lee, Ka-Hyung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.1
    • /
    • pp.163-172
    • /
    • 2014
  • To investigate the possibility of developing the seeding measure for river bank slope revegetation, germination experiment and early growth observation were conducted using 3 native species growing naturally around river banks such as Pennisetum alopecuroides, Phragmites communis, and Miscanthus sinensis. The applied seeding methods were 3 such as scattering seeds, tillage after scattering seeds, and covering up seed with soil after scattering seeds. According to seeding methods, germination experiment and early growth observation were carried out on nursery bed soil in greenhouse. As results of this study, all the 3 native plant species' germination ratio and growth in length on nursery bed soil were highest on the seeding method of covering up seed with soil. Also it was verified by Duncan's multiple range test that the germination ratio and growth in length on the seeding method of covering up seed with soil is distinguished from those on other two seeding methods. According to this results, the best possible seeding measure to be developed should be mechanical seed spraying with soil.

Soil water retention and vegetation survivability improvement using microbial biopolymers in drylands

  • Tran, An Thi Phuong;Chang, Ilhan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.17 no.5
    • /
    • pp.475-483
    • /
    • 2019
  • Vegetation cover plays a vital role in stabilizing the soil structure, thereby contributing to surface erosion control. Surface vegetation acts as a shelterbelt that controls the flow velocity and reduces the kinetic energy of the water near the soil surface, whereas vegetation roots reinforce the soil via the formation of root-particle interactions that reduce particle detachment. In this study, two vegetation-testing trials were conducted. The first trial was held on cool-season turfgrasses seeded in a biopolymer-treated site soil in an open greenhouse. At the end of the test, the most suitable grass type was suggested for the second vegetation test, which was conducted in an environmental control chamber. In the second test, biopolymers, namely, starch and xanthan gum hydrogels (pure starch, pure xanthan gum, and xanthan gum-starch mixtures), were tested as soil conditioners for improving the water-holding capacity and vegetation growth in sandy soils. The results support the possibility that biopolymer treatments may enhance the survival rate of vegetation under severe drought environments, which could be applicable for soil stabilization in arid and semiarid regions.

Seasonal Variation of Carbon Dioxide Flux between Soil Surface Layer and Atmosphere in Unvegetated Tidal Flat : Beolgyo Tidal Flat (비식생 갯벌 표층과 대기의 이산화탄소 플럭스 계절 변동 분석: 벌교 갯벌)

  • Kyeong-deok Park;Dong-hwan Kang;Yoon Hwan So;Won Gi Jo;Byung-Woo Kim
    • Journal of Environmental Science International
    • /
    • v.32 no.4
    • /
    • pp.267-276
    • /
    • 2023
  • In this study, we analyzed seasonal variations in carbon dioxide fluxes, concentrations, and soil temperatures over three years in unvegetated tidal flats in the Beolgyo area. We also investigated the correlations between carbon dioxide fluxes and influencing factors. The average carbon dioxide flux was positive in summer and autumn but negative in winter and spring. A positive correlation was observed between carbon dioxide flux and soil temperature in spring whereas a negative correlation was noted in summer. In summer and autumn, as the soil temperature increased, the carbon dioxide flux decreased. In contrast, in spring and winter, as the soil temperature decreased, the carbon dioxide flux increased. Overall, this study reveals the significant influence of soil temperatures on carbon dioxide fluxes between the surface layer of the tidal flat and atmosphere.

A Feasibility Test on an Artificial Recharge System for one Representative Greenhouse Complex Zone, Korea (시설농업지역 지하수 인공함양 실증시험 연구)

  • Lee, Byung Sun;Myoung, Wooho;Oh, Sebong;Jun, Seong-Chun;Piao, Jize;Song, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.12-24
    • /
    • 2020
  • This study was conducted to examine an artificial recharge system, which was considered to be an alternative for securing additional groundwater resources in a high-density greenhouse region. An injection well with a depth of 14.0 m was placed in an alluvial plain of the zone. Eight monitoring wells were placed in a shape of dual circles around the injection well. Aquifer tests showed that the aquifer was comprised with high-permeable layer with hydraulic conductivities of 1.5×10-3~2.4×10-2 cm/sec and storage coefficients of 0.07~0.10. A step injection test resulted in a specific groundwater-level rising (Sr/Q) values of 0.013~0.018 day/㎡ with 64~92% injection efficiencies. Results of the constant-rate injection test with an optimal injection rate of 100 ㎥/day demonstrated an enormous storage capacity of the alluvial aquifer during ten experimental days. To design an optimal recharge system for an artificial recharge, the high-permeable layer should be isolated by dual packers and suitable pressure should be applied to the injection well in order to store water. An anisotropy ratio of the alluvial aquifer was evaluated to be approximately 1.25 : 1 with an anisotropy angle of 71 degrees, indicating intervals among injection wells are almost the same.

Root Colonization and ISR-mediated Anthracnose Disease Control in Cucumber by Strain Enterobacter asburiae B1

  • Bharathkumar, S.;Park, Jin-Woo;Han, Ji-Hee;Park, Kyung-Seok
    • The Plant Pathology Journal
    • /
    • v.25 no.4
    • /
    • pp.333-343
    • /
    • 2009
  • Here, we show that an endophytic bacterial strain, Enterobacter asburiae B1 exhibits the ability to elicit ISR in cucumber, tobacco and Arabidopsis thaliana. This indicates that strain B1 has a widespread ability to elicit ISR on various host plants. In this study, E. asburiae strain B1 did not show antifungal activity against tested major fungal pathogens, Colletotrichum orbiculare, Botrytis cinerea, Phytophthora capsici, Rhizoctonia solani, and Fusarium oxysporum. Moreover, the siderophore production by E. asburiae strain B1 was observed under in vitro condition. In greenhouse experiments, the root treatment of strain B1 significantly reduced disease severity of cucumber anthracnose caused by fungal pathogen C. orbiculare compared to nontreated control plants. By root treatment of strain B1 more than 50% disease control against anthracnose on cucumber was observed in all greenhouse experiments. Simultaneously, under the greenhouse condition, the soil drench of strain B1 and a chemical inducer benzothiadiazole (BTH) to tobacco plants induced GUS activity which is linked with activation of PR promoter gene. Furthermore, in Arabidopsis thaliana plants the soil drench of strain B1 induced the defense gene expression of PR1 and PDF1.2 related to salicylic acid and jasmonic acid/ethylene signaling pathways, respectively. In this study, for the main focus on root colonization by strain B1 associated with defense responses, bacterial cells of strain B1 was tagged with the gfp gene encoding the green fluorescent protein in order to determine the colonization pattern of strain B1 in cucumber. The gfp-tagged B1 cells were found on root surface and internal colonization in root, stem, and leaf. In addition to this, the scanning electron microscopy observation showed that E. asburiae strain B1 was able to colonized cucumber root surface.