• Title/Summary/Keyword: greenhouse gas emissions (GHGs)

Search Result 53, Processing Time 0.019 seconds

Evaluation of Green House Gases Emissions According to Changes of Soil Water Content, Soil Temperature and Mineral N with Different Soil Texture in Pepper Cultivation (고추재배에서 토성별 토양수분, 토양온도, 무기태 질소 변화에 따른 온실가스배출 평가)

  • Kim, Gun-Yeob;Song, Beom-Heon;Roh, Kee-An;Hong, Suk-Young;Ko, Byung-Gu;Shim, Kyo-Moon;So, Kyu-ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.6
    • /
    • pp.399-407
    • /
    • 2008
  • Importance of climate change and its impact on agriculture and environment has increased with a rise of greenhouse gases (GHGs) concentration in Earth's atmosphere, which had caused an increase of temperature in Earth. Greenhouse gas emissions such as methane($CH_4$) and nitrous oxide($N_2O$) in the field need to be assessed. GHGs fluxes using chamber systems in the fields(2004~2005) with pepper cultivation were monitored at the experimental plots of National Academy of Agricultural Science(NAAS), Rural Development Administration(RDA) located in Suwon city. $N_2O$ emission during pepper growing period was reduced to 74.0~82.1% in sandy loam soil compared with those in clay loam soil. Evaluating $N_2O$ emission at different levels of soil water conditions, $N_2O$ emission at -50 kPa were lowered to 13.2% in clay loam soil and 40.2% in sandy loam soil compared with those at -30 kPa. $CH_4$ emission was reduced to 45.7~61.6% in sandy loam soil compared with those in clay loam soil. Evaluating $CH_4$ at different levels of soil water conditions, $CH_4$ emission at -50 kPa was lowered to 69.6% in clay loam soil and 55.8% in sandy loam soil compared with those at -30 kPa. It implied that -50 kPa of soil water potential was effective for saving water and reducing GHG emissions. From the path analysis as to contribution factors for $N_2O$ emission, it appeared that contribution rate was in the order of mineral N(51.2%), soil temperature (25.8%), and soil moisture content(23.0%) in clay loam soil and soil moisture content(39.3%), soil temperature (36.4%), and mineral N(24.3%) in sandy loam soil.

Development of the Performance Indicator for the Mitigation of Greenhouse Gas Emissions from Products - Estimation of Social Cost for Global Warming Impact using the Conjoint Analysis - (제품의 온실가스 배출저감에 대한 성과지표 개발 - 컨조인트 분석(conjoint analysis)을 이용한 지구온난화 영향의 사회적 비용 추정 -)

  • Jeong, In-Tae;Lee, Kun-Mo;Song, Jong-Sung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.12
    • /
    • pp.1245-1254
    • /
    • 2008
  • Proposing a method for the estimation of the social cost for global warming impact (external cost) is the aim of this paper. Both the endpoint approach and conjoint analysis were applied to estimating the social cost for global warming. The endpoint approach was used to assess the damage on the safeguard subjects by global warming due to the emission of greenhouse gases into the atmosphere. The conjoint analysis was used to estimate the economic values for safeguard subjects which measure the social preferences and willingness to pay (WTP) on safeguard subjects. The economic values of human health and social asset were estimated at 62,261,700 Won / DALY (yr) and 10,000 Won / 10,000 Won, respectively. Moreover, cost factors of GHGs were calculated by multiplying the damage factor which is quantified the unit damage on safeguard subject and the economic value. In the case of CO$_2$, the cost factor was calculated at 13.52 Won / kg (13,520 Won / ton). External cost of products or services can be calculated by multiplying the GHG inventory result of products or services by the cost factor of each GHG. inventory.

The Impacts of Barley Straw Burning Having Different Moisture Contents and Harvesting Timing on Air Pollutant Emission (보릿짚의 수분함량 및 수확시기가 소각시 대기오염물질 발생에 미치는 영향)

  • Ko, Jee-Yeon;Kang, Hang-Won;Lee, Jae-Sang;Kim, Chun-Song;Park, Seong-Tae;Kim, Bok-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.2
    • /
    • pp.99-103
    • /
    • 2004
  • This study was carried out to determine impacts of burning of barley straw produced from rice-barley double cropping paddy field on air quality by investigating emissions of greenhouse gases ($CO_2$, $CH_4$ and $N_2O$), air pollution gases (CO, $SO_2$, $H_2S$, $NH_3$ and NO) and particulate matters (PM 10 and PM 2.5). When the barley straw at a rate of 4.5 t/ha was burned at open status, the emitted GHGs amounts were $CO_2$ 376.8 kg/l0a, $CH_4$ 1.56 and $N_2O$ 0.06. The amount of CO emission was the largest among air pollution gases. These results showed that the range of $45{\sim}55%$ of total C in barley straw was emitted as $CO_2-C$, followed by CO-C ($6.4{\sim}5.9%$) and $CH_4-C$ ($0.5{\sim}0.7%$). As far as moisture content in barley straw is concerned, the higher moisture content that the barley straw contains, the larger amount of air pollution gases and the higher portion of PM 2.5 in PM 10 were emitted when it burned. In case of harvesting time of barley straw, emission amounts of greenhouse, air pollution gases and PM 2.5 portion in PM 10 had tendency to increase when earlier harvested barley straw was burned.