• Title/Summary/Keyword: green tea catechin

Search Result 168, Processing Time 0.027 seconds

Anti-Cancer Effects of Green Tea by Either Anti- or Pro-Oxidative Mechanisms

  • Hayakawa, Sumio;Saito, Kieko;Miyoshi, Noriyuki;Ohishi, Tomokazu;Oishi, Yumiko;Miyoshi, Mamoru;Nakamura, Yoriyuki
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1649-1654
    • /
    • 2016
  • Tea derived from the leaves and buds of Camellia sinensis (Theaceae) is consumed worldwide. Green tea contains various components with specific health-promoting effects, and is believed to exert protective effects against diseases including cancer, diabetes and hepatitis, as well as obesity. Of the various tea components, the polyphenol catechins have been the subject of extensive investigation and among the catechins, (-)-epigallocatechin gallate has the strongest bioactivity in most cases. Our research group has postulated that hepatocyte nuclear factor-$4{\alpha}$, sterol regulatory element-binding proteins, and tumor necrosis factor-${\alpha}$ are targets of green tea constituents including (-)-epigallocatechin gallate for their anti-diabetes, anti-obesity, and anti-hepatitis effects, respectively. Published papers were reviewed to determine whether the observed changes in these factors can be correlated with anti-cancer effects of green tea. Two major action mechanisms of (-)-epigallocatechin gallate have been proposed; one associated with its anti-oxidative properties and the other with its pro-oxidative activity. When reactive oxygen species are assumed to be involved, our findings that (-)-epigallocatechin gallate downregulated hepatocyte nuclear factor-$4{\alpha}$, sterol regulatory element-binding proteins, and tumor necrosis factor-${\alpha}$ may explain the anti-cancer effect of green tea as well. However, further studies are required to elucidate which determinant directs (-)-epigallocatechin gallate action as an anti-oxidant or a pro-oxidant for favorable activity.

Antiproliferative and Anticarcinogenic Enzyme-Inducing Activities of Green Tea Seed Extract in Hepatoma Cells

  • Lim, Hyun-Ae;Jang, Chan-Ho;Kim, Jang-Hoon;Kim, Ju-Ryoung;Ha, Young-Ran;Song, Young-Sun;Kim, Young-Kyoon;Kim, Jong-Sang
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.914-919
    • /
    • 2006
  • We investigated the catechin content in green tea leaf (GTL) and green tea seed (GTS), the antiproliferative and detoxifying phase II enzyme-inducing activities of the methanolic (80%, v/v) extracts from GTL and GTS. GTL and GTS contained $8,685{\pm}1,061$ and $108{\pm}32\;{\mu}g/g$ epigallocatechin gallate (EGCG), $11,486{\pm}506$ and $116{\pm}72\;{\mu}g/g$ epigallocatechin (EGC), $3,535{\pm}308$ and $821{\pm}95\;{\mu}g/g$ epicatechin gallate (ECG), and $1,429{\pm}177$ and $37{\pm}44\;{\mu}g/g$ epicatechin (EC), respectively. The methanolic extract of GTS showed a greater increase in quinone reductase activity and antiproliferation potential against mouse hepatoma cells than GTL extract did. GTS treatment resulted in the accumulation at sub-G1 phase of mouse hepatoma hepa1c1c7 cells as assessed by flow cytometry. Enhancement of phase II enzyme activity by GTS extract was shown to be mediated, directly or indirectly, via interaction with the antioxidant response element (ARE) sequence in the genes encoding the phase enzymes. As the catechin content in GTS was significantly lower than that in GTL, components other than catechins appear to be responsible for the anticarcinogenic activity of the seed. In summary, these results suggest that the 80% methanolic extract of GTS deserves further study to evaluate its potential as an anticarcinogenic agent and to investigate its mechanism of action.

Effect of Catechins, Green tea Extract and Methylxanthines in Combination with Gentamicin Against Staphylococcus aureus and Pseudomonas aeruginosa - Combination therapy against resistant bacteria -

  • Bazzaz, Bibi Sedigheh Fazly;Sarabandi, Sahar;Khameneh, Bahman;Hosseinzadeh, Hossein
    • Journal of Pharmacopuncture
    • /
    • v.19 no.4
    • /
    • pp.312-318
    • /
    • 2016
  • Objectives: Bacterial resistant infections have become a global health challenge and threaten the society's health. Thus, an urgent need exists to find ways to combat resistant pathogens. One promising approach to overcoming bacterial resistance is the use of herbal products. Green tea catechins, the major green tea polyphenols, show antimicrobial activity against resistant pathogens. The present study aimed to investigate the effect of catechins, green tea extract, and methylxanthines in combination with gentamicin against standard and clinical isolates of Staphylococcus aureus (S. aureus) and the standard strain of Pseudomonas aeruginosa (P. aeruginosa). Methods: The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) values of different agents against bacterial strains were determined. The interactions of green tea extract, epigallate catechin, epigallocatechin gallate, two types of methylxanthine, caffeine, and theophylline with gentamicin were studied in vitro by using a checkerboard method and calculating the fraction inhibitory concentration index (FICI). Results: The MICs of gentamicin against bacterial strains were in the range of $0.312-320{\mu}g/mL$. The MIC values of both types of catechins were $62.5-250{\mu}g/mL$. Green tea extract showed insufficient antibacterial activity when used alone. Methylxanthines had no intrinsic inhibitory activity against any of the bacterial strains tested. When green tea extract and catechins were combined with gentamicin, the MIC values of gentamicin against the standard strains and a clinical isolate were reduced, and synergistic activities were observed (FICI < 1). A combination of caffeine with gentamicin did not alter the MIC values of gentamicin. Conclusion: The results of the present study revealed that green tea extract and catechins potentiated the antimicrobial action of gentamicin against some clinical isolates of S. aureus and standard P. aeruginosa strains. Therefore, combinations of gentamicin with these natural compounds might be a promising approach to combat microbial resistance.

Functional characterization of domestic and foreign green tea cultivars at different harvest periods (채취시기가 다른 국내외 녹차잎의 기능성분 함량, 뇌세포 생존 및 대사 효소 활성 조절 효과 조사)

  • Lee, Bang-Hee;Jeon, Sae Hyun;Jeong, Hana;Choi, Jung;Kim, Young-Min;Yang, Kwang-Yeol;Nam, Seung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.427-434
    • /
    • 2020
  • This study was performed to compare nutritional compounds and physiological functions of five domestic and imported green tea cultivars at three time points. The five cultivars were compared for theanine, γ-aminobutyric acid, and catechin content by LC-MS/MS and HPLC. Furthermore, the five tea cultivars were functionally characterized with respect to antioxidant activity, brain cell protective effect, and inhibitions of α-glucosidase and HMG-CoA reductase activities. Among green tea cultivars, Chamnok had the highest content of catechins (198 mg/g DW), theanine (11.89 mg/g DW), and tannin (23.6 mg/g DW). Considering functional properties, Chamnok treatment resulted in the maximum viability of brain cells and reduced the cortisol content of SH-SY5Y cells. The inhibition of α-glucosidase and HMG-CoA reductase was the strongest following Chamnok treatment (72.9% and 69.8%, respectively). These results indicate that Chamnok could be optimal for consumption or favorable processing owing to its high nutritional compounds, such as theanine and catechin, and remarkable brain cell protective effects.

A Study on Change in Chemical Composition of Green Tea, White Tea, Yellow Tea, Oolong Tea and Black Tea with Different Extraction Conditions (녹차, 백차, 황차, 우롱차 및 홍차의 추출조건에 따른 이화학적 성분 조성 변화 연구)

  • Lee, Young-Sang;Jung, Seul-A;Kim, Jung-Hwan;Cho, Kyoung-Sook;Shin, Eul-Ki;Lee, Hee-Young;Ryu, Hye-Kyung;Ahn, Hyun-Ju;Jung, Won-Il;Hong, Sung-Hak
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.5
    • /
    • pp.766-773
    • /
    • 2015
  • This study analyzes the chemical composition of green tea, white tea, yellow tea, oolong tea and black tea with respect to extraction temperature and time. The optimum extraction conditions for these teas were determined by assessing the chemical composition of tea brewed at different temperature (50, 60, 70, $80^{\circ}C$) and extraction times (1, 3, 5, 10 minute). Catechins contents were the largest at 5 minutes and generally declined by 10 minutes. Green tea catechins contents were highest when brewed at $70^{\circ}C$ and besides other teas a change of the trend variation at 70 and $80^{\circ}C$. These temperatures did not extract theaflavins in green tea. Extract temperature and time did not significantly affect theaflavins content of white tea, yellow tea, and oolong tea. Black tea, however, was noticeably dependent on extract conditions, which were most effective at $70^{\circ}C$, brewed for 5 minutes. Caffeine content of green tea, yellow tea, and oolong tea was highest at 5 minutes, but temperature did not appear to affect the content. White tea and black tea caffeine content was highest when brewed at $70^{\circ}C$ for 5 minutes. Theobromine content of green tea, yellow tea, oolong tea, and black tea did not show major differences between the study times or temperature, though the content in white tea increased with higher temperatures when brewed for 5 minutes. The extraction of phenolic compounds increased until 5 minutes, and showed not further increase at 10 minutes. Antioxidant capacity of green tea, white tea, and yellow tea were maximized at $70^{\circ}C$ for 5 minutes or $80^{\circ}C$ for 3 minutes, while oolong and black tea were reached maximum antioxidants at $70^{\circ}C$ for 5 minutes. In general, to optimize the beneficial chemical content of brewed tea, a water temperature of $70^{\circ}C$ for 5 minutes is recommended.

Physicochemical Properties and Antioxidant Activities of Loose-leaf Green Tea Commercially Available in Korea (국내 시판 잎차 형태 녹차의 이화학 특성 및 산화방지 활성)

  • Lee, Lan-Sook;Kim, Sang-Hee;Park, Jong-Dae;Kim, Young-Boong;Kim, Young-Chan
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.419-424
    • /
    • 2015
  • The objective of this study was to investigate the physicochemical and antioxidant properties of a variety of commonly consumed commercial green tea. Green tea samples with the same commercial name produced at different regions were analyzed. High-grade tea samples showed higher values of lightness (L) and greenness (-a). Additionally, compared to other varieties of teas, high-grade tea samples showed higher levels of catechin, gallocatechin gallate (GCg), epicatechin gallate (ECg), theanine, and methylxanthines and a lower level of epigallocatechin (EGC). The antioxidant activity of green tea was also investigated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical assays. High-grade teas were observed to have higher antioxidant activities. The results of this study indicate that the catechin content, such as EGCg, GCg, and ECg levels, was found to positively influence the total antioxidant activity of green tea.

Isolation of 3-Galloylprocyanidin B3, a Glucosyltransferase Inhibitor from the Korean Green Tea Leaves

  • Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.4
    • /
    • pp.273-276
    • /
    • 2000
  • In the course of surveying the anti-plaque agents for dental caries prevention, the extract of Korean green tea leaves (KGTL) was tested for inhibitory activity against Streptococcus mutans adhering to glass surfaces in the presence of crude glucosyltransferase (GTase). The extracts of KGTL showed a positive inhibitory activity against GTase. The active compound was purified through Sephadex LH-20 and MCI gel CHP-20P columns. A positive reaction was shown in the anisaldehyde-$H_2SO_4$ test, which confirmed the condensed tannin. The inhibitory compound was identified as 3-galloylprocyanidin $B_3$ through IR, negative FAB-mass, and $^{1}H$-NMR spectroscopic analyses. Acetone extract and 3- galloylprocyanidin $B_3$ of KGTL showed inhibitory effect against GTase. The percent of inhibition was determinated to be 71.84% (P<0.01) with 10 mM 3-galloylprocyanidin B3. The 3-galloylprocyanidin $B_3$, which possessed a galloyl, showed a higher inhibitory activity against glucosyltransferase than monomeric (+)-catechin and procyanidine $B_3$ which had no galloyl group.

  • PDF

Effect of Storage Conditions on the Quality of Green Tea Beverage (저장 조건이 녹차 음료의 품질에 미치는 영향)

  • Lee, Jung-Min;Lim, Sang-Wook;Cho, Sung-Hwan;Choi, Sung-Gil;Heo, Ho-Jin;Lee, Seung-Cheol
    • Journal of agriculture & life science
    • /
    • v.43 no.3
    • /
    • pp.27-34
    • /
    • 2009
  • Green tea was prepared by soaking 1.5 g of green tea leaves into 100 mL of distilled water at $75^{\circ}C$ for 5 min. The green tea was stored at three different conditions - (A) green tea was stored at not-artificially excluding natural light condition, at natural air condition, and without addition of vitamin C; (B) green tea was stored at artificially excluding natural light condition by wrapping a vial with aluminium foil, at nitrogen filling up condition, and with addition of 30 mg/100 mL of vitamin C; and (C) green tea was stored at artificially excluding natural light condition by wrapping a vial with aluminium foil, at nitrogen filling up condition, and without addition of vitamin C. After 28 days of storage at $4^{\circ}C$, the chemical quality of the green tea was evaluated. Total phenolic contents of (A), (B), and (C) green tea decreased to 71.50, 73.88 and 75.07%, respectively, after storing for 28 days compared to those of beginning state. DPPH radical scavenging activities of (A), (B), and (C) green tea were 87.87, 92.93 and 88.39%, respectively. Epigallocatechin gallate (EGCG), the main active compounds of green tea, contents of (A), (B), and (C) green tea were 130.61, 136.47 and 4.34%, respectively. The results indicated that light, air condition, and vitamin C were significantly important to the chemical quality of green tea during storage.

Effects of Green Tea Catechin on Platelet Phospholipase $A_{2}$ Activity and the Liver Antioxidative Defense System in Streptozotocin-induced Diabetic Rats

  • Yang, Jeong-Ah;Rhee, Soon-Jae
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.4
    • /
    • pp.213-218
    • /
    • 2000
  • The purpose of the study was to investigate the effects of dietary green tea catechin and vitamin E on the phospholipse {TEX}$A_{2}${/TEX} activity and th antioxidative defense system in streptozotocin (STZ)-induced diabetic rats. Sprague-Dawley male rats weighing 100$\pm$10 gm were randomly assigned to one normal and five STZ-induced diabetic groups. The diabetic groups were assigned either a catechin-free diet (DM group), 0.5% catechin diet (DM-0.5C group), 1% catechin diet (DM-1C group), vitamin E-free diet (DM-0E group), and 400 mg vitamin E per kg diet (DM-400E group) according to the levels of dietary catechin or vitamin E supplementation. The vitamin E levels of the normal, DM, DM-0.5C, and DM-1C groups were 40 mg per kg diet. Diabetes was experimentally induced by an intravenous injection of streptozotocin after 4 weeks of feeding the five experimental diets. The animals were sacrificed on the 6th day of he diabetic state. The body weight gains were lower in all five diabetic groups after the STZ injection. The platelet phospholipase {TEX}$A_{2}${/TEX}({TEX}$PLA_{2}${/TEX}) activity in the diabetic groups was higher than that in the normal group. However, the enzyme activity in the DM-0.5C, DM-1C, and DM-400E groups was lower than that in the DM and DM-0E groups. The cytochrome {TEX}$P_{450}${/TEX} and cytochrome {TEX}$b_{5}${/TEX} content and NADPH-cytochrome {TEX}$P_{450}${/TEX} reductase activity were about 50~110% higher in the DM and DM-0E groups than in the normal group, yet significantly reduced by either catechin or vitamin E supplementation. The superoxide dismutase (SOD) content in the liver did not differ significantly in any of the groups. However, the glutathione peroxidase (GSHpx) activity was generally lower in the diabetic groups, compared with the normal group, whereas that of the DM-0.5C, DM-1C, and DM-400E groups was significantly higher compared with that of the DM and DM-0E groups. The levels of thiobarbituric acid reactive substances (TBARS) in the liver tissue were 148% and 201% higher in the DM and DM-0E groups, respectively, compared with the normal group, however, these levels were reduced by either catechin or vitamin E supplementation (DM-0.5, DM-1C and DM-400E). Accordingly, the present results indicate that STZ-induced diabetic rats exhibited an imbalance between free radical generation and scavenger systems in the liver which led to the acceleration of lipid peroxidation. However, these abnormalities were reduced and the antioxidative defense system was restored by either dietary catechin or vitamin E supplementation. In conclusion, the effects of dietary catechin or vitamin E in streptozotocin-induced diabetic rats would appear to inhibit lipid peroxidation as an anti-oxidant by regulating the activity of {TEX}$PLA_{2}${/TEX}.

  • PDF

Effect of Green Tea Catechin on Acute Hepatotoxicity in Rats (랫트의 간 손상에 대한 녹차카테킨의 보호 및 치료효과)

  • Yuk, Dong-Yeon;Lee, Mi-Yea;Yun, Yeo-Pyo
    • Journal of Food Hygiene and Safety
    • /
    • v.19 no.3
    • /
    • pp.105-111
    • /
    • 2004
  • Green tea catechin (GTC) is known to have a wide variety of pharmacological activites. In the present study, the effects of GTC on acute hepatotoxicity induced by carbon tetrachloride ($CCl_4$) and galactosamine were examined in rats. Two doses (50 or 100 mg/kg) of GTC were administered to rats orally for 3 days befor or after the induction of hepatotoxicity. A hepatotoxicity was induced by the inpraperitoneal injection of the $CCl_4$ (0.5 ml/kg) or galactosamine (400 mg/kg). GTC(50 mg/kg) reduced the aspartate aminotransferase (AST) and alanine aminotransferase (ALT) level of the $CCl_4$-intoxicated rats in the pre-treatment group (from 262${\pm}$11, 80${\pm}$19 to 153${\pm}$22, 55${\pm}$25), and also in the post-treatment group (from 156${\pm}$40, 105${\pm}$3 to 106${\pm}$22, 55${\pm}$9), respectively. And GTC (50 mg/kg) also reduced the levels of AST and ALT in both pre-treatment (from 576${\pm}$24, 276${\pm}$68 to 236${\pm}$13, 115${\pm}$13) and post-treatment (from 233${\pm}$54, 137${\pm}$11 to 119${\pm}$23, 44${\pm}$17) when induced by galactosamine. GTC also showed the inhibition of pathogenesis of hepatocyte of $CCl_{4^-}$ and galatosamine-intoxicated rat. These results suggest that green tea catechin (GTC) may be useful fur the prevention and therapy of hepatotoxic pathogenesis.