• Title/Summary/Keyword: green mold

Search Result 142, Processing Time 0.025 seconds

A Study on Heat Transfer in Sand Molds (사형(砂型)의 열전달(熱傳達)에 관(關)한 연구(硏究))

  • Lee, Jong-Nam;Kim, Kwang-Bea
    • Journal of Korea Foundry Society
    • /
    • v.2 no.1
    • /
    • pp.2-11
    • /
    • 1982
  • In order to investigate the relationship between the thermal characteristics of the various molds as green sand mold, dry sand mold, $CO_2$ mold and shell mold, and the solidification characteristics of molten metal, the thermal analysis of rarious molds and melt were performed. The structure of Al-Castings was a/so observed. Results obtained in this experiment were as follows : 1) The heating rate of the molds was increased in the order of green sand mold, $CO_2$ mold, dry sand mold and shell mold, On the other hand the solidification time of the melts was shortened in the order of dry sand mold castings, $CO_2$ mold castings, green sand mold castings and shell mold castings. 2) The arrest temperature period in the heating curve of the green sand mold was resulted from the eraporation of moisture contained in mold, which was transfered to the outer side of the mold. 3) The temperature fluctuation of the melt in the shell mold was considered to be resulted from the combution heat of resin contained in the mold. 4) The amounts of heat absorption of the molds were increased in the order of dry sand mold, $CO_2$ mold, green sand mold and shell mold. 5) The higher the solidification rate was, the longer was its shrinkage pipe and the finer its grain size.

  • PDF

Effects of Thiabendazole on Green Mold, Trichoderma spp. during Cultivation of Oyster Mushroom, Pleurotus spp. (느타리버섯 푸른곰팡이병에 대한 Thiabendazole의 방제효과)

  • Jhune, Chang-Sung;You, Chang-Hyun;Cha, Dong-Yeol;Kim, Gwang-Po
    • The Korean Journal of Mycology
    • /
    • v.18 no.2
    • /
    • pp.89-96
    • /
    • 1990
  • This study was conducted to find out the effects of Thiabendazole on controlling green mold causing serious damage to oyster mushroom, Pleurotus spp. during the cultivation. In vitro, the strains of oyster mushroom such as ASI 2018, 2072 and 2016 were inhibited by 500 ppm of the fungicide, but the strain of ASI 2001 and ASI 2070 was inhibited by 100 and 500 ppm on oatmeal agar, respectively. The mycelial growth of the oyster mushroom started to be inhibition by soak treatment at a 0.2g/1000 ml aqueous solution of the fungicide. When the oyster mushroom and green mold inoculated both or separately on the substrates of soak treatment, the green mold did not grow at all, but the oyster mushroom grown well. The maximum control effect of the green mold showed when $2g/m^2\;and\;5g/m^2$ of the fungicide was sprayed on the surface of substrates before pasteurization. The highest yield of the sporophores of oyster mushroom was obtained from $5g/m^2$ treatment.

  • PDF

Suppression of Green and Blue Mold in Postharvest Mandarin Fruit by Treatment of Pantoea agglomerans 59-4

  • Yu, Sang-Mi;Kim, Yong-Ki;Nam, Hyo-Song;Lee, Young-Kee;Lee, Seung-Don;Lee, Kui-Jae;Lee, Yong-Hoon
    • The Plant Pathology Journal
    • /
    • v.26 no.4
    • /
    • pp.353-359
    • /
    • 2010
  • In order to control postharvest spoilage of satsuma mandarin fruits, rhizobacteria were isolated from soil samples. The Pantoea agglomerans strain 59-4 (Pa 59-4) which suppresses the decay of mandarin fruit by green and blue mold, was tested for the control efficacy and its mode of action was investigated. Pa 59-4 inhibited infection by green and blue mold on wounded mandarins, which were artificially inoculated with a spore suspension of Penicillium digitatum and P. italicum with control efficacies of 85-90% and 75-80%, respectively. The biocontrol efficacy was increased by raising the concentration of cells to between $10^8$ and $10^9\;cfu/ml$, and pretreatment with the antagonist prevented subsequent infection by green mold. The population of Pa 59-4 was increased more than 10 fold during the 24 hr incubation at $20^{\circ}C$, indicating that colonization of the wound site might prevent the infection by green mold. Despite poor antifungal activity, the Pa 59-4 isolate completely inhibited the germination and growth of P. digitatum spores at $1{\times}10^8\;cfu/ml$. We argue that the control efficacy was mediated by nutrient competition. Overall, the effective rhizobacterium, Pa 59-4, was shown to be a promising biocontrol agent for the postharvest spoilage of mandarin fruits by green and blue mold.

Increase in antifungal activity by the combination of tolaasin and its analogue peptides (톨라신류 펩티드 혼합처리에 의한 항진균 활성의 증가)

  • Yun, Yeong-Bae;Lee, Hyoung-Jin;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.1
    • /
    • pp.69-73
    • /
    • 2018
  • Oak mushroom (Lentinus edodes) is cultivated by using oak logs and sawdust medium. Green mold (Trichoderma) infection on these media severely suppresses the growth of oak mushroom. Usages of antibiotics and chemicals are not generally allowed to control of green mold since the mushroom is a fresh food. Tolaasin and its analogues, peptide toxins secreted by Pseudomonas tolaasii, have the antifungal activity and they have been successful to control the green mold disease. When the green mold, Trichoderma harzianum H1, was cultured in the presence of these toxins, the growth of fungus was effectively suppressed. In sawdust media, when the bacterial culture supernatants were sprayed on the aerial hyphae of green molds, the fungal growth was completely suppressed. Particularly, the antifungal activity was greatly increased by the combined culture extracts of P. tolaasii 6264 and HK11 strains. Therefore, these bacterial strains and their peptide toxins were able to suppress the growth of green molds and these can be good candidates to prevent from Trichoderma disease in oak mushroom cultivation.

High Precision Molding Process for Barrier Ribs of PDP by using a Soft Mold and a Green Sheet

  • Ryu, Seung-Min;Park, Lee-Soon;Yang, Dong-Yol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.316-319
    • /
    • 2007
  • In this paper, high precision molding process was developed using a soft mold to fabricate fine closed-types of the barrier ribs for PDP. A green sheet was employed to fabricate the barrier ribs in this process. The soft mold with good demolding characteristics was replicated from a master mold. An optimal forming load which would not fracture the soft mold was also determined. The barrier ribs of rectangular type with upper width of $30\;{\mu}m$ would be fabricated by this process.

  • PDF

Fabrication of Micro Component of Metallic Nano Powder Using Polymer Mold (폴리머 몰드를 이용한 금속 나노분말의 미세부품 제조)

  • Lee, Woo-Seok;Kim, Sang-Phil;Lee, Hye-Moon;Bae, Dong-Sik;Choi, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.14 no.3 s.62
    • /
    • pp.202-207
    • /
    • 2007
  • Novel polymer mold process for fabrication of microcomponents using metal nanopowders was developed and experimentally optimized. Polymer mold for forming green components was produced by using a hard master mold and polydimethylsiloxane (PDMS). In the preparation of metallic powder premix for the green components without any defect, 90 wt.% 17-4PH statinless steel nanopowders and 10 wt.% organic binder were mixed by a ball milling process. The green components with very clear gear shape were formed by filling the powder premix into the PDMS soft mold in surrounding at about $100^{\circ}C$. Cold isostatic pressing (CIP) was very potent process to decrease a porosity in the sintered microcomponent. The microgear fabricated by the improved process showed a good dimension tolerance of about 1.2%.

Characterization of Green Mold Contamination caused by Penicillium brevicompactum in Hypsizygus marmoreus (느티만가닥버섯에서 Penicillium brevicompactum에 의해 유발된 곰팡이 오염 특성)

  • Kim, Min-Keun;Sim, Soon-Ae;Kim, Ah-Young;Kwon, Jin-Hyeuk;Chang, Young-Ho
    • The Korean Journal of Mycology
    • /
    • v.48 no.4
    • /
    • pp.397-405
    • /
    • 2020
  • Beech mushroom (Hypsizygus marmoreus) is one of the most popular mushrooms in Japan, China, and Korea because of its delicious taste, nutritious value, and unique crunchy texture. In 2018-2019, unusual signs on the mushroom were observed in mushroom farms in Gyeongnam Province. The main signs were the inhibition of mycelial growth and primordial formation on the surface of mushroom media. When green mold caused contamination at early stage, the rate of pinhead formation by the mushroom greatly decreased to 46.5-71.5%. Conidia of the causal green mold were ellipsoidal, dark green, and measured 2.0-3.1㎛ long. The optimum temperature for mycelial growth of the green mold was 25℃. The phylogenetic tree obtained from the internal transcribed spacer (ITS) rDNA sequences showed that the isolated green mold corresponded to Penicillium brevicompactum (100.0%). This is the first report of green mold contamination caused by P. brevicompactum on H. marmoreus.

Suppression of green mold disease on oak mushroom cultivation by antifungal peptides (항진균성 펩티드에 의한 표고버섯 푸른곰팡이병의 억제)

  • Lee, Hyoung-Jin;Yun, Yeong-Bae;Huh, Jeong-Hoon;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.2
    • /
    • pp.149-153
    • /
    • 2017
  • Contamination and growth of Trichoderma, a green mold, on the oak log and wooden chip or sawdust media can severely inhibit the growth of oak mushroom. Chemicals including pesticides and antibiotics are generally not allowed for the control of green mold disease during mushroom cultivation. In this study, bacterial pathogens causing blotch disease on the oyster mushrooms were isolated and their peptide toxins were purified for the control of green mold disease. Strains of Pseudomonas tolaasii secret various peptide toxins, tolaasin and its structural analogues, having antifungal activities. These peptides have shown no effects on the growth of oak mushrooms. When the peptide toxins were applied to the green mold, Trichoderma harzianum H1, they inhibited the growth of green molds. Among the 20 strains of peptide-forming P. tolaasii, strong, moderate, and weak antifungal activities were measured from 8, 5, and 7 strains, respectively. During oak mushroom cultivation, bacterial culture supernatants containing the peptide toxins were sprayed on the aerial mycelia of green molds grown on the surface of sawdust media. The culture supernatants were able to suppress the fungal growth of green molds while no effect was observed on the mushroom growth and production. They changed the color of molds from white aerial mycelium into yellowish dried scab, representing the powerful anti-fungal and sterilization activities of peptide toxins.

Molecular Markers for Detecting a Wide Range of Trichoderma spp. that Might Potentially Cause Green Mold in Pleurotus eryngii

  • Lee, Song Hee;Jung, Hwa Jin;Hong, Seung-Beom;Choi, Jong In;Ryu, Jae-San
    • Mycobiology
    • /
    • v.48 no.4
    • /
    • pp.313-320
    • /
    • 2020
  • In Pleurotus sp., green mold, which is considered a major epidemic, is caused by several Trichoderma species. To develop a rapid molecular marker specific for Trichoderma spp. that potentially cause green mold, eleven Trichoderma species were collected from mushroom farms and the Korean Agricultural Culture Collection (KACC). A dominant fungal isolate from a green mold-infected substrate was identified as Trichoderma pleuroticola based on the sequences of its internal transcribed spacer (ITS) and translation elongation factor 1-α (tef1) genes. In artificial inoculation tests, all Trichoderma spp., including T. atroviride, T. cf. virens, T. citrinoviride, T. harzianum, T. koningii, T. longibrachiatum, T. pleurotum, and T. pleuroticola, showed pathogenicity to some extent, and the observed symptoms were soaked mycelia with a red-brown pigment and retarded mycelium regeneration. A molecular marker was developed for the rapid detection of wide range of Trichoderma spp. based on the DNA sequence alignment of the ITS1 and ITS2 regions of Trichoderma spp. The developed primer set detected only Trichoderma spp., and no cross reactivity with edible mushrooms was observed. The detection limits for the PCR assay of T. harzianum (KACC40558), T. pleurotum (KACC44537), and T. pleuroticola (CAF-TP3) were found to be 500, 50, and 5 fg, respectively, and the detection limit for the pathogen-to-host ratio was approximately 1:10,000 (wt/wt).