• 제목/요약/키워드: green microalgae

검색결과 94건 처리시간 0.019초

영흥도 조간대 갯벌 저서미세조류의 생태적 중요성; 안정동위원소 분석 활용 (Ecological Importance of Benthic Microalgae in the Intertidal Mud Flat of Yeongheung Island; Application of Stable Isotope Analysis (SIA))

  • 강수진;최보형;한용진;신경훈
    • 생태와환경
    • /
    • 제49권2호
    • /
    • pp.80-88
    • /
    • 2016
  • 영흥도 인근 갯벌의 저서 먹이망 구조를 파악하고, BMA가 저서동물에 대한 먹이원으로써의 중요성을 파악하기 위하여 저서동물 (이매패류, 갑각류, 복족류, 어류)과 먹이원의 탄소 및 질소 안정동위원소비를 분석하였다. 먹이원의 후보인 POM, BMA, 잘피 (Z. marina)와 해조류의 탄소 안정동위원소비는 -26.5‰에서 -8.4‰로 넓은 범위를 보였으며, 저서동물의 탄소 안정동위원소비는 -17.8‰에서 -12.1‰로 먹이원의 탄소 안정동위원소 범위 내에 존재하였다. 해조류 중 녹조류와 SOM을 제외한 먹이원의 질소 안정동위원소비 ($5.7{\pm}1.0$‰)는 저서동물($11.8{\pm}1.9$‰)에 비하여 가벼운 것으로 나타나, 기존의 연구와 유사한 경향을 보였다. 탄소와 질소 안정동위원소비 분석을 통하여 저서동물은 세 그룹으로 나누어질 수 있음을 확인하였으며, 이는 각 그룹 내 저서동물의 먹이원 및 생태적 지위가 유사함을 의미한다. 또한 각 그룹에 대한 BMA의 먹이 기여도가 매우 큰 것으로 파악되었으며 이와 같은 연구 결과를 통해서 영흥도 조간대 갯벌 생태계에 있어 BMA가 가장 기초적인 생물자원이라는 것을 확인할 수 있었다.

Nuclear rDNA characteristics for DNA taxonomy of the centric diatom Chaetoceros (Bacillariophyceae)

  • Oh, Hye-Young;Cheon, Ju-Yong;Lee, Jin-Hwan;Hur, Sung-Bum;Ki, Jang-Seu
    • ALGAE
    • /
    • 제25권2호
    • /
    • pp.65-70
    • /
    • 2010
  • The genus Chaetoceros provides highly diversified diatoms in marine systems. Morphological descriptions of the genus are well-documented, yet the DNA taxonomy of Chaetoceros has not been satisfactorily established. Here, the molecular divergences of the 18S-28S rDNA of Chaetoceros were assessed. DNA similarities were relatively low in both 18S (93.1 $\pm$ 3.9%) and 28S rDNA (81.0 $\pm$ 4.6%). Phylogenies of the 18S, 28S rDNAs showed that Chaetoceros was divided according to individual species, clustering the same species into single clades. Statistical analysis with corrected genetic (p-) distance scores showed that nucleotide divergence of Chaetoceros 28S rDNA significantly differed from that of 18S rDNA (Student's t-test, p < 0.05). This finding suggests that the 28S rDNA may be treated as a more suitable marker for species-level taxonomic distinctions of Chaetoceros.

Morphological, Molecular, and Biochemical Characterization of Monounsaturated Fatty Acids-Rich Chlamydomonas sp. KIOST-1 Isolated from Korea

  • Jeon, Seon-Mi;Kim, Ji Hyung;Kim, Taeho;Park, Areumi;Ko, Ah-Ra;Ju, Se-Jong;Heo, Soo-Jin;Oh, Chulhong;Affan, Md. Abu;Shim, Won-Bo;Kang, Do-Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권5호
    • /
    • pp.723-731
    • /
    • 2015
  • Microalgae hold promise as producers of sustainable biomass for the production of biofuels and other biomaterials. However, the selection of strains with efficient and robust production of desirable resources remains challenging. In this study, we isolated a green microalga from Korea and analyzed its morphological, molecular, and biochemical characteristics. Microscopic and phylogenetic analyses demonstrated that the isolate could be classified into the genus Chlamydomonas, and we designated the isolate Chlamydomonas sp. KIOST -1. Compositions of protein, lipid, and carbohydrate in the microalgal cells were estimated to be 58.8 ± 0.2%, 22.7 ± 1.2%, and 18.5 ± 1.0%, respectively. Similar to other microalgae belonging to Chlorophyceae, the dominant amino acid and monosaccharide in Chlamydomonas sp. KIOST-1 were glutamic acid and glucose. On the other hand, the proportions of saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids clearly differed from other species in the genus Chlamydomonas, and monounsaturated fatty acids accounted for a large portion (41.3%) of the total fatty acids in the isolate. Based on these results, Chlamydomonas sp. KIOST-1 has advantageous characteristics for biomass production.

Biohydrogen production from engineered microalgae Chlamydomonas reinhardtii

  • Kose, Ayse;Oncel, Suphi S.
    • Advances in Energy Research
    • /
    • 제2권1호
    • /
    • pp.1-9
    • /
    • 2014
  • The green microalgae Chlamydomonas reinhardtti is well-known specie in the terms of $H_2$ production by photo fermentation and has been studying for a long time. Although the $H_2$ production yield is promising; there are some bottlenecks to enhance the yield and efficiency to focus on a well-designed, sustainable production and also scaling up for further studies. D1 protein of photosystem II (PSII) plays an important role in photosystem damage repair and related to $H_2$ production. Because Chlamydomonas is the model algae and the genetic basis is well-studied; metabolic engineering tools are intended to use for enhanced production. Mutations are focused on D1 protein which aims long-lasting hydrogen production by blocking the PSII repair system thus $O_2$ sensitive hydrogenases catalysis hydrogen production for a longer period of time under anaerobic and sulfur deprived conditions. Chlamydomonas CC124 as control strain and D1 mutant strains(D240, D239-40 and D240-41)are cultured photomixotrophically at $80{\mu}mol\;photons\;m^{-2}s^{-1}$, by two sides. Cells are grown in TAP medium as aerobic stage for culture growth; in logarithmic phase cells are transferred from aerobic to an anaerobic and sulfur deprived TAP- S medium and 12 mg/L initial chlorophyll content for $H_2$ production which is monitored by the water columns and later detected by Gas Chromatography. Total produced hydrogen was $82{\pm}10$, $180{\pm}20$, $196{\pm}20$, $290{\pm}30mL$ for CC124, D240, D239-40, D240-41, respectively. $H_2$ production rates for mutant strains was $1.3{\pm}0.5mL/L.h$ meanwhile CC124 showed 2-3 fold lower rate as $0.57{\pm}0.2mL/L.h$. Hydrogen production period was $5{\pm}2days$ for CC124 and mutants showed a longer production time for $9{\pm}2days$. It is seen from the results that $H_2$ productions for mutant strains have a significant effect in terms of productivity, yield and production time.

미세조류를 이용한 질소제거 장치의 크기 (Size Estimation of Microalgal System for Nitrogen Removal)

  • 김한욱;이우성;이철균
    • KSBB Journal
    • /
    • 제19권3호
    • /
    • pp.236-240
    • /
    • 2004
  • Batch experiment에서 다양한 질소 농도에서 구해진 질소제거 속도와 비 생장속도 등의 데이터를 토대로 4.6일의 체류시간을 갖는 2단 처리 장치를 설계하였다. 그리고 continuous experiments에서는 3.5일의 체류시간을 갖는 2단의 처리 장치를 설계하였다. 두 가지 값에 차이는 있지만 실제 현장에서 폐수 처리 장치를 설계할 때 충분한 자료가 되리라고 판단한다. 따라서 위의 결과를 토대로 기존 시스템에 미세조류 시스템을 부가한다면 기존공정의 단점인 잉여질소 제거 장치로서 충분히 역할을 수행해 배출 기준치를 만족시키는 안전한 폐수처리장치가 되리라고 판단한다.

신규 미세조류 Tetraselmis sp. KCTC12236BP의 분리 및 이를 이용한 바이오디젤 제조 (Isolation of New Microalga, Tetraselmis sp. KCTC12236BP, and Biodiesel Production using Its Biomass)

  • 신동우;배재한;조용희;류영진;김지훈;임상민;이철균
    • 한국해양바이오학회지
    • /
    • 제8권1호
    • /
    • pp.39-44
    • /
    • 2016
  • The microalgae have been studied for a source of biodiesel production. It is important to select the microalgae, which grows rapidly in local environmental conditions such as temperature range and ingredient of local seawater. The aim of this study was isolating microalga, which has rapid growth rate and high FAME contents in wide temperature ranges, for microalgal offshore cultivation in Korea, one of the country with four distinct seasons. Firstly, we had isolated a green microalga, Tetraselmis sp. KCTC12236BP, which has faster growth rate in low temperature (5 and $10^{\circ}C$) than Tetraselmis suecica and Dunaliella tertiolecta LB999 from Young Heung Island, Incheon, Korea. This microalga was cultivated in outdoor circulated tank photobioreactor (CT-PBR). As a result, this microalga could grow in wide temperature ranges (6 to $29^{\circ}C$), outdoors. After that, the biomass was recovered, and 13.2 g biodiesel could be acquired from 110 g dry biomass. These results indicate that the isolated microalga, Tetraselmis sp. KCTC12236BP is proper to biodiesel production using outdoor cultivation in Korea for all seasons.

Increased Microalgae Growth and Nutrient Removal Using Balanced N:P Ratio in Wastewater

  • Lee, Seung-Hoon;Ahn, Chi-Yong;Jo, Beom-Ho;Lee, Sang-Ah;Park, Ji-Yeon;An, Kwang-Guk;Oh, Hee-Mock
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권1호
    • /
    • pp.92-98
    • /
    • 2013
  • Microalgal cultivation using wastewater is now regarded as essential for biodiesel production, as two goals can be achieved simultaneously; that is, nutrient removal efficiency and biomass production. Therefore, this study examined the effects of carbon sources, the N:P ratio, and the hydraulic retention time (HRT) to identify the optimal conditions for nutrient removal efficiency and biomass production. The effluent from a 2nd lagoon was used to cultivate microalgae. Whereas the algal species diversity and lipid content increased with a longer HRT, the algal biomass productivity decreased. Different carbon sources also affected the algal species composition. Diatoms were dominant with an increased pH when bicarbonate was supplied. However, 2% $CO_2$ gas led to a lower pH and the dominance of filamentous green algae with a much lower biomass productivity. Among the experiments, the highest chlorophyll-a concentration and lipid productivity were obtained with the addition of phosphate up to 0.5 mg/l P, since phosphorus was in short supply compared with nitrogen. The N and P removal efficiencies were also higher with a balanced N:P ratio, based on the addition of phosphate. Thus, optimizing the N:P ratio for the dominant algae could be critical in attaining higher algal growth, lipid productivity, and nutrient removal efficiency.

Ornamented Resting Spores of a Green Alga, Chlorella sp., Collected from the Stone Standing Buddha Statue at Jungwon Miruksazi in Korea

  • Klochkova, Tatyana A.;Kim, Gwang-Hoon
    • ALGAE
    • /
    • 제20권4호
    • /
    • pp.295-298
    • /
    • 2005
  • The growth of subaerial microalgae on historic buildings or various cultural properties causes discoloration and physico-chemical deterioration of the surfaces. We collected a subaerial chlorophyte, Chlorella sp., from the stone Standing Buddha statue at Jungwon Miruksazi, which is a national treasure of Korea, and found dormant, thickwalled spores with regular pentagonal ornamentation along with the vegetative Chlorella cells. The morphology of Chlorella resting spores was compared to that of the other green algal resting cells. The ornamented spores and smooth-walled vegetative cells revived in 2 weeks in a liquid freshwater medium and started reproduction by autospores. To our knowledge, the ability of Chlorella to form ornamented dormant spores in drought condition was not previously recorded. The ornamentation of spores would supplement taxonomic characteristics of this genus.

Secondary Carotenoid Accumulation in Haematococcus (Chlorophyceae): Biosynthesis, Regulation, and Biotechnology

  • Jin Eon-Seon;Lee Choul-Gyun;Polle Jurgen E.W.
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권6호
    • /
    • pp.821-831
    • /
    • 2006
  • Unicellular green algae of the genus Haematococcus have been studied extensively as model organisms for secondary carotenoid accumulation. Upon environmental stress, such as strong irradiance or nitrogen deficiency, unicellular green algae of the genus Haematococcus accumulate secondary carotenoids in vesicles in the cytosol. Because secondary carotenoid accumulation occurs only upon specific environmental stimuli, there is speculation about the regulation of the biosynthetic pathway specific for secondary carotenogenesis. Because the carotenoid biosynthesis pathway is located both in the chloroplast and the cytosol, communication between both cellular compartments must be considered. Recently, the induction and regulation of astaxanthin biosynthesis in microalgae received considerable attention because of the increasing use of this secondary carotenoid as a source of pigmentation for fish aquaculture, as a component in cancer prevention, and as a free-radical quencher. This review summarizes the biosynthesis and regulation of the pathway, as well as the biotechnology of astaxanthin production in Haematococcus.

A chemosystematic investigation of selected Stichococcus-like organisms (Trebouxiophyta)

  • Van, Anh Tu;Karsten, Ulf;Glaser, Karin
    • ALGAE
    • /
    • 제36권2호
    • /
    • pp.123-135
    • /
    • 2021
  • The taxonomy of green microalgae relies traditionally on morphological traits but has been rapidly changing since the advent of molecular methods. Stichococcus Nägeli is a cosmopolitan terrestrial algal genus of the class Trebouxiophyceae that has recently been split into seven lineages, which, along with Pseudostichococcus, comprise the Stichococcuslike group; there is a need to further characterize these genera, since they are morphologically enigmatic. Here we used organic osmolytes as chemotaxonomic marker to verify the phylogenetic position of Stichococcus-like strains and were also able to exclude a strain hitherto identified as Gloeotila contorta from this group. Stichococcus-like organisms, including those recently revised, were characterized by the production of the polyol sorbitol and the disaccharide sucrose in high amounts, as is typical of Prasiola-clade algae. The results demonstrate that organic osmolyte chemotaxonomy can support green algal taxonomic designations as fundamental research.