DOI QR코드

DOI QR Code

Ecological Importance of Benthic Microalgae in the Intertidal Mud Flat of Yeongheung Island; Application of Stable Isotope Analysis (SIA)

영흥도 조간대 갯벌 저서미세조류의 생태적 중요성; 안정동위원소 분석 활용

  • Kang, Sujin (Department of Marine Sciences and Convergent Technology, Hanyang University) ;
  • Choi, Bohyung (Department of Marine Sciences and Convergent Technology, Hanyang University) ;
  • Han, Yongjin (Department of Marine Sciences and Convergent Technology, Hanyang University) ;
  • Shin, Kyung-Hoon (Department of Marine Sciences and Convergent Technology, Hanyang University)
  • 강수진 (한양대학교 해양융합과학과) ;
  • 최보형 (한양대학교 해양융합과학과) ;
  • 한용진 (한양대학교 해양융합과학과) ;
  • 신경훈 (한양대학교 해양융합과학과)
  • Received : 2016.03.17
  • Accepted : 2016.06.09
  • Published : 2016.06.30

Abstract

In order to reconstruct a benthic foodweb structure and assess the role of benthic microalgaes as a diet source for benthos, we analyzed the carbon and nitrogen stable isotopes of diverse benthos (bivalves, crustaceans, gastropods and fishes) and potential diets (particulate organic matter, sedimentary organic matter, benthic microalgae, seagrass, and macroalgaes) in the intertidal mudflat surrounding Yeongheung Island. The ${\delta}^{13}C$ values of the diets indicated wide ranges (- 26.5‰ to - 8.4‰) while benthos showed a small range of ${\delta}^{13}C$ values (-12.1‰ to - 17.8‰), although they were in the same range. Except for green algaes among the macroalgaes as well as sedimentary organic matter, ${\delta}^{15}N$ values of the diet candidates ($5.7{\pm}1.0$‰) were lighter in comparison to those of the benthos ($11.8{\pm}1.9$‰). Based on the ${\delta}^{13}C$ and ${\delta}^{15}N$ data, the benthos were classified into 3 groups, indicating a different diet and trophic position. But benthic microalgae is the most important diet source for all three benthos groups based on their stable isotope ratios, suggesting benthic microalgae should be a main diet to the intertidal ecosystem. Hence this study highlights that the biomass of benthic microalgae as biological resource should be evaluated for the management of the intertidal ecosystem of Yeongheung Island.

영흥도 인근 갯벌의 저서 먹이망 구조를 파악하고, BMA가 저서동물에 대한 먹이원으로써의 중요성을 파악하기 위하여 저서동물 (이매패류, 갑각류, 복족류, 어류)과 먹이원의 탄소 및 질소 안정동위원소비를 분석하였다. 먹이원의 후보인 POM, BMA, 잘피 (Z. marina)와 해조류의 탄소 안정동위원소비는 -26.5‰에서 -8.4‰로 넓은 범위를 보였으며, 저서동물의 탄소 안정동위원소비는 -17.8‰에서 -12.1‰로 먹이원의 탄소 안정동위원소 범위 내에 존재하였다. 해조류 중 녹조류와 SOM을 제외한 먹이원의 질소 안정동위원소비 ($5.7{\pm}1.0$‰)는 저서동물($11.8{\pm}1.9$‰)에 비하여 가벼운 것으로 나타나, 기존의 연구와 유사한 경향을 보였다. 탄소와 질소 안정동위원소비 분석을 통하여 저서동물은 세 그룹으로 나누어질 수 있음을 확인하였으며, 이는 각 그룹 내 저서동물의 먹이원 및 생태적 지위가 유사함을 의미한다. 또한 각 그룹에 대한 BMA의 먹이 기여도가 매우 큰 것으로 파악되었으며 이와 같은 연구 결과를 통해서 영흥도 조간대 갯벌 생태계에 있어 BMA가 가장 기초적인 생물자원이라는 것을 확인할 수 있었다.

Keywords

References

  1. Choy, E.J., S. An and C.-K. Kang. 2008. Pathways of organic matter through food webs of diverse habitats in the regulated Nakdong River estuary (Korea). Estuarine Coastal and Shelf Science 78: 215-226. https://doi.org/10.1016/j.ecss.2007.11.024
  2. Dang, C., P.G. Sauriau, N. Savoye, N. Caill-Milly, P. Martinez, C. Millaret, J. Haure and X. de Montaudouin. 2009. Determination of diet in Manila clams by spatial analysis of stable isotopes. Marine Ecology Progress Series 387:167-177. https://doi.org/10.3354/meps08100
  3. Deniro, M.J. and S. Epstein. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45: 341-351. https://doi.org/10.1016/0016-7037(81)90244-1
  4. Dickman, E.M., J.M. Newell, M.J. Gonzalez and M.J. Vanni. 2008. Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels. PNAS 105(47):18408-18412. https://doi.org/10.1073/pnas.0805566105
  5. Dubois, S., F. Orvain, J. Marin-Leal, M. Ropert and S. Lefebvre. 2007. Small-scale spatial variability of food partitioning between cultivated oysters and associated suspension-feeding species, as revealed by stable isotopes. Marine Ecology Progress Series 336: 151-160. https://doi.org/10.3354/meps336151
  6. Focken, U. and K. Becker. 1998. Metabolic fractionation of stable carbon isotopes: implications of different proximate compositions for studies of the aquatic food webs using ${\delta}^{13}C$ data. Oecologia 115: 337-343. https://doi.org/10.1007/s004420050525
  7. France, R.L. 1995. Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Marine ecology Progress Series 124: 307-312. https://doi.org/10.3354/meps124307
  8. Grall, J., F. Le Loc'h, B. Guyonnet and P. Riera. 2006. Community structure and food web based on stable isotopes (${\delta}^{15}N$ and ${\delta}^{13}C$ analysis of a North Eastern Atlantic maerl bed. Journal of Experimental Marine Biology and Ecology 338: 1-15. https://doi.org/10.1016/j.jembe.2006.06.013
  9. Ha, S.Y., W.-K. Min, D.-S. Kim and K.-H. Shin. 2014. Trophic importance of meiofauna to polychaetes in a seagrass (Zostera marina) bed as traced by stable isotopes. Journal of the Marine Biological Association of the United Kingdom 94(1):121-127. https://doi.org/10.1017/S0025315413001148
  10. Han, E., H.J. Park, L. Bergamino, K.-S. Choi, E.J. Choy, O.H. Yu, T.W. Lee, H.-S. Park, W.J. Shim and C.-K. Kang. 2015. Stable isotope analysis of a newly established macrofaunal food web 1.5 years after the Hebei Spirit oil spill. Marine Pollution Bulletin 90: 167-180. https://doi.org/10.1016/j.marpolbul.2014.10.054
  11. Hanson, C.E., G.A. Hyndes and S.F. Wang. 2010. Differentiation of benthic marine primary producers using stable isotopes and fatty acids: Implications to food web studies. Aquatic Botany 93: 114-122. https://doi.org/10.1016/j.aquabot.2010.04.004
  12. Hyslop, E.J. 1980. Stomach contents analysis-a review of methods and their application. Journal of Fish Biology 17: 411-429. https://doi.org/10.1111/j.1095-8649.1980.tb02775.x
  13. Je, J.-G., J.-H. Lee and C.-H. Koh. 1998. Tidal Flat Studies:Present and Future. Ocean and Polar Research 20(2):57-61.
  14. Jones, J.I. and S. Waldron. 2003. Combined stable isotope and gut contents analysis of food webs in plant-dominated, shallow lakes. Freshwater Biology 48: 1396-1407. https://doi.org/10.1046/j.1365-2427.2003.01095.x
  15. Kang, C.-K., E.J. Choy, Y. Son, J.-Y. Lee, J.K. Kim, Y. Kim and K.-S. Lee. 2008. Food web structure of a restored macroalgal bed in the eastern Korean peninsula determined by C and N stable isotope analyses. Marine Biology 153:1181-1198. https://doi.org/10.1007/s00227-007-0890-y
  16. Kang, C.-K., E.J. Choy, Y.-S. Kim and H.J. Park. 2009. Study of food web structure and trophic level in the sea ponds of an optimized. The Sea Journal of the Korean Society of Oceanography 14(1):56-62.
  17. Kang, C.-K., J.B. Kim, K.-S. Lee, J.B. Kim, P.-Y. Lee and J.-S. Hong. 2003. Trophic importance of benthic microalgae to macrozoobenthos in coastal bay systems in Korea: dual stable C and N isotope analyses. Marine Ecology Progress Series 259: 79-92. https://doi.org/10.3354/meps259079
  18. Kang, C.-K., Y.S. Kang, E.J. Choy, D.S. Kim, B.T. Shim and P.Y. Lee. 2007. Condition, reproductive activity, and biochemical composition of the Manila clam, Tapes philippinarum in natural and newly created sandy habitats of the southern coast of Korea. Journal of Shellfish Research 26(2):401-412. https://doi.org/10.2983/0730-8000(2007)26[401:CRAAGB]2.0.CO;2
  19. Keeley, J.E. and D.R. Sandquist. 1992. Carbon: freshwater plants. Plant Cell Environ 15: 1021-1035. https://doi.org/10.1111/j.1365-3040.1992.tb01653.x
  20. Kim, S.-Y., H.-C. Kim, W.-C. Lee, D.-W. Hwang, S.-J. Hong, J.-B. Kim, Y.-S. Cho and C.-S. Kim. 2013. Environmental Characteristics of Seawater and Sediment in Mariculture Management Area in Ongjin-gun, Korea. Journal of the Korean Society of Marine Environment & Safety 19(6):570-581. https://doi.org/10.7837/kosomes.2013.19.6.570
  21. Koh, C.-H. 2001. The Korean tidal flat: Environment, Biology and Human. Seoul National University Press. Seoul.
  22. Komorita, T., R. Kajihara, H. Tsutsumi, S. Shibanuma, T. Yamada and S. Montani. 2014. Food Sources for Ruditapes philippinarum in a Coastal Lagoon Determined by Mass Balance and Stable Isotope Approaches. PLoS ONE 9(1):e86732. https://doi.org/10.1371/journal.pone.0086732
  23. Kon, K., Y. Hoshino, K. Kanou, D. Okazaki, S. Nakayama and H. Kohno. 2012. Estuarine, Coastal and Shelf Science 96:236-244. https://doi.org/10.1016/j.ecss.2011.11.015
  24. Kwon, O.K., D.-K. Min, J. Lee, J.-S. Lee, J.-G. Je and B.L. Choe. 2001. Korean mollusks with color illustration. Hanguel. Busan.
  25. Lebreton, B., P. Richard, R. Galois, G. Radenac, A. Brahmia, G. Colli, M. Grouazel, C. Andre, G. Guillou and G.F. Blanchard. 2012. Food sources used by sediment meiofauna in an intertidal Zostera noltii seagrass bed: a seasonal stable isotope study. Marine Biology 159: 1537-1550. https://doi.org/10.1007/s00227-012-1940-7
  26. Manelatto, F.L.M. and R.A. Christofoletti. 2001. Natural feeding activity of the crab Callinectes ornatus (Portunidae) in Ubatuba Bay (Sao Paulo, Brazil):influence of season, sex, size and molt stage. Marine Biology 138(3):585-594. https://doi.org/10.1007/s002270000474
  27. Miller, D.C., R.J. Geider and H.L. Macintyre. 1996. Microphytobenthos:The Ecological Role of the "Secret Garden" of Unvegetated, Shallow-Water Marine Habitats. I1. Role in Sediment Stability and Shallow-Water Food Webs. Estuaries 19(2A):202-212. https://doi.org/10.2307/1352225
  28. Minagawa, M. and E. Wada. 1984. Stepwise enrichment of 15N along food chains: Further evidence and the relation between ${\delta}^{15}N$ and animal age. Geochimica et Cosmochimica Acta 48: 1135-1140. https://doi.org/10.1016/0016-7037(84)90204-7
  29. Ouisse, V., P. Riera, A. Migne, C. Leroux and D. Davoult. 2012. Food web analysis in intertidal Zostera marina and Zostera noltii communities in winter and summer. Marine Biology 159: 165-175. https://doi.org/10.1007/s00227-011-1796-2
  30. Park, H.P., J.M. Jeong, H.J. Kim, S.J. Ye and G.W. Baeck. 2015. Feeding Habits of Javelin Goby Synechogobius hasta on Tide Flat in Sangnae-ri Suncheon, Korea. Korean Journal of Fish Aquatic Sciences 48(6):982-987. https://doi.org/10.5657/KFAS.2015.0982
  31. Persson, L. 1999. Trophic cascades: abiding heterogeneity and the trophic level concept at the end of the road. Oikos 85:385-397. https://doi.org/10.2307/3546688
  32. Peterson, B.J. 1999. Stable isotopes as tracers of organic matter input and transfer in benthic food webs: A review. Acta Oecologica 20(4):479-487. https://doi.org/10.1016/S1146-609X(99)00120-4
  33. Peterson, B.J. and B. Fry. 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18:293-320. https://doi.org/10.1146/annurev.es.18.110187.001453
  34. Phillips, L.D. and J.W. Gregg. 2003. Source partitioning using stable isotope: coping with too many sources. Oceaologia 136: 261-269. https://doi.org/10.1007/s00442-003-1218-3
  35. Post, D.M., M.L. Pace and N.G. Hairston Jr. 2000. Ecosystem size determines food-chain length in lakes. Nature 405:1047-1049. https://doi.org/10.1038/35016565
  36. Riera, P. and P. Richard. 1996. Isotopic Determination of Food Sources of Crassostrea gigas Along a Trophic Gradient in the Estuarine Bay of Marennes-Oleron. Estuarine Coastal and Shelf Science 42: 347-360. https://doi.org/10.1006/ecss.1996.0023
  37. Riera, P., L. Stal and J. Nieuwenhuize. 2004. Utilization of food sources by invertebrates in a man-made intertidal ecosystem (Westerschelde, the Netherlands):a ${\delta}^{13}C$ and ${\delta}^{15}N$ study. Journal of the Marine Biological Association of the UK 84: 323-326. https://doi.org/10.1017/S002531540400921Xh
  38. Seo, I.-S. and J.-S. Hong. 2009. Food Habits of the Asian Paddle Crab, Charybdis japonica (A. Milne-Edwards) on the Jangbong Tidal Flat, Incheon, Korea. Korean Journal of Environmental Biology 27(3):297-305.
  39. Soreide, J.E., T. Tonias, H. Haakon, A.H. Keith and J. Ingar. 2006. Sanoke oreoaration effects on stable C and N isotope values: a comparison of methods in Arctic marine food web studies. Marine Ecology Progress 328: 17-28. https://doi.org/10.3354/meps328017
  40. Vafeiadou, A.-M., P. Materatski, H. Adao, M. De Troch and T. Moens. 2013. Food sources of macrobenthos in an estuarine seagrass habitat (Zostera noltii) as revealed by dual stable isotope signatures. Marine Biology 160: 2517-2523. https://doi.org/10.1007/s00227-013-2238-0
  41. Vizzini, S. and A. Mazzola. 2006. Sources and transfer of organic matter in food webs of a Mediterranean coastal environment: Evidence for spatial variability. Estuarine Coastal and Shelf Science 66: 459-467. https://doi.org/10.1016/j.ecss.2005.10.004
  42. Yokoyama, H. and Y. Ishihi. 2003. Feeding of the bivalve Theora lubrica on benthic microalgae: isotopic evidence. Marine Ecology Progress Series 255: 303-309. https://doi.org/10.3354/meps255303
  43. Yokoyama, H., A. Tamaki, K. Shimoda, K. Koyama and Y. Ishihi. 2005. Variability of diet-tissue isotopic fractionation in estuarine macrobenthos. Marine Ecology Progress Series 296: 115e128. https://doi.org/10.3354/meps296115
  44. Yokoyama, H., T. Skami and Y. Ishihi. 2009. Food sources of benthic animals on intertidal and subtidal bottoms in inner Ariaka sound, southern Japan, determined by stable isotopes. Estuarine Coastal and Shelf Science 82: 243-253. https://doi.org/10.1016/j.ecss.2009.01.010