• Title/Summary/Keyword: green innovation

Search Result 181, Processing Time 0.028 seconds

A Case Study on the Improvement of the Beauty of Photovoltaic Generator : Focusing on the case of installation on the vertical side wall of a building (태양광 발전기의 심미성 향상을 위한 사례분석 연구 : 건물 수직 측벽에 설치되는 사례를 중심으로)

  • Lee, Jae-Hyun;Park, Ji-Hoon;Nam, Won-Suk;Jang, Jung-Sik
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.97-103
    • /
    • 2020
  • This study sets the solar power system installed and applied to the vertical side wall among the photovoltaic systems in the building as the scope of the research. The theoretical background was considered through literature research as a research method, and the current status, trends and characteristics of solar generator design installed and applied to domestic and foreign vertical side walls were then investigated and analyzed cases. As a result, the importance and necessity of photovoltaic generators, potential for power generation and growth were identified, and positive factors and directions were found for improving aestheticity. Based on this point, we would like to propose expected effects that can be applied to photovoltaic system design installed and applied to vertical side walls in the future, and confirm the direction and significance of the improvement of aesthetic quality of the proposal for development of thin film solar cell design technology using green facade design.

Improving Biomass Productivity of Freshwater microalga, Parachlorella sp. by Controlling Gas Supply Rate and Light Intensity in a Bubble Column Photobioreactor (가스공급속도 및 광도조절을 이용한 담수미세조류 Parachlorella sp.의 바이오매스 생산성 향상)

  • Z-Hun Kim;Kyung Jun Yim;Seong-Joo Hong;Huisoo Jang;Hyun-Jin Jang;Suk Min Yun;Seung Hwan Lee;Choul-Gyun Lee;Chang Soo Lee
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.41-48
    • /
    • 2023
  • The objective of the present study was to improve the biomass productivity of newly isolated freshwater green microalga Parachlorella sp. This was accomplished by culture conditions optimization, including CO2 concentration, superficial gas velocity, and light intensity, in 0.5 L bubble column photobioreactors. The supplied CO2 concentration and gas velocity varied from 0.032% (air) to 10% and 0.02 m/s - 0.11 m/s, respectively, to evaluate their effects on growth kinetics. Next, to maximize the production rate of Parachlorella sp., a lumostatic operation based on a specific light uptake rate (qe) was applied. From these results, the optimal CO2 concentration in the supplied gas and the gas velocity were determined to be 5% and 0.064 m/s, respectively. For the lumostatic operation at 10.2 µmol/g/s, biomass productivity and photon yield showed significant increases of 83% and 66%, respectively, relative to cultures under constant light intensity. These results indicate that the biomass productivity of Parachlorella sp. can be improved by optimizing gas properties and light control as cell concentrations vary over time.

Legal and Policy Tasks for Raising a Climate Fund in Response to a New Climate Regime (신기후체제 대응을 위한 기후기금 조성의 법·정책적 과제)

  • Ku, Ji Sun;Park, Chul Ho
    • Journal of Climate Change Research
    • /
    • v.9 no.2
    • /
    • pp.181-195
    • /
    • 2018
  • On December 12, 2015, the Conference of the Parties to the United Nations Framework Convention on Climate Change (UNFCCC) adopted the Paris Agreement, in which several developed and developing countries all committed to participating in the reduction of greenhouse-gas (GHG) emissions. South Korea has submitted an intended nationally determined contribution (INDC) proposal with a target to cut down 37% greenhouse gas business as usual (BAU) until 2030 in preparation for the 2030 GHG BAU. Under the post-2020 regime, which will be launched from 2021 as the agreement entered into force early, it is expected that efforts to support GHG reduction and adaptation to climate change in developing countries will be accelerated with the utilization of technologies and financial resources of developed countries. South Korea has established the Basic Plan for Climate Change Response and the Basic National Roadmap for Greenhouse Gas Reductions by 2030 to promote the response to climate change at the government level. The Ministry of Science and ICT, as the National Designated Entity designated by the UNFCCC, has come up with middle and long-term strategies for climate technology cooperation. South-Korea has an abundance of energy-consuming industries to support its export-oriented industrial structure; it is thus expected that achieving the GHG reduction target will incur a considerable cost. Moreover, in order to meet the reduction target (11.3%) of the intended nationally determined contribution proposed by South Korea, it is necessary for South Korea to actively promote projects that can achieve GHG reduction achievements, and financial resources are needed as leverage to reduce risks that can occur in the early stages of projects and attract private sector investment. This paper summarizes the theoretical discussions on climate finance and conducted a comparative analysis on the status of the funds related to climate change response in the UK, Germany, Japan and Denmark. Through this, we proposed the legal and policy tasks that should be carried forward to raise public funds that can be used for creation of new industries related to climate change as well as to reduce GHG emissions in South Korea. The Climate Change Countermeasures Act, which has been proposed by the National Assembly of South-Korea, stipulates the establishment of funds but there is no additional funding except for general account. In this regard, it is also possible to take measures such as the introduction of carbon tax or the collection and use of royalties through technology research and development projects for climate change, such as Industrial Technology Innovation Promotion Act. In addition, since funds are used in various fields such as domestic greenhouse gas reduction, technology development, and overseas projects, it is necessary to establish a system in which various ministries cooperate with the operation of the fund.

Development of Nutrient Solution for Hydroponics of Cruciferae Leaf Vegetables Based on Nutrient-Water Absorption Rate and the Cation Ratio (양수분 흡수율과 양이온 비율에 의한 배추과 엽채류 수경 배양액 개발)

  • Choi Ki Young;Yang Eun-Young;Park Dong-Kum;Kim Young Chul;Seo Tae Cheol;Yun Hyung Kweon;Seo Hyo Duk
    • Journal of Bio-Environment Control
    • /
    • v.14 no.4
    • /
    • pp.289-297
    • /
    • 2005
  • This study was conducted to develop the suitable nutrient solutions for variable Cruciferae leafy vegetables. l/2, 1 and 3/2 strength of nutrient solution recommended by National Horticultural Research Institute were supplied to plants in deep flow technique systems during 25 days. The growth of pak-choi and leaf mustard 'Asia curled' was highest in the 3/2 strength, and kaie 'TBC' in the 1 strength. Mean cation ratio of nutrient solution for pak-choi, leaf mustard and kale was K $49.5\%$, Ca $35.8\%$ and Mg $14.7\%$, which was obtained by calculating the uptake rates of water and nutrients. Suitable composition of the nutrient solution for Cruciferae leafy vegetables was N 14, P 3, K 6.8, Ca 4.8, $Mg 2m{\cdot}L^{-1}$. To examine the suitability of nutrient solution developed for Cruciferae vegetables (NSC), plants were grown 4 times from Sep. 2003 to Oct. 2004. When plants were grown in NSC, relative growth rate increased 1.1 to 2.5 times and vitamin C content 1.06 to 1.52 times. The proper plants to apply NSC for functional leaf vegetable production were leaf mustard 'Asia recurled', 'Redcurled' and 'Pamagreen', kale 'TBC', 'Portugal' and 'Hanchu collard', leaf broccoli 'New green', pak-choi, baby cabbage 'Red king' and 'Green king', flowering red chinese cabbage and Korean cabbage.

Effect of eco-label recognition on corporate association and purchasing intention in fashion business (패션비즈니스에서 소비자의 에코라벨 인지도가 기업연상과 구매의도에 미치는 영향연구)

  • Shin, Sangmoo;Kim, Min Jung
    • The Research Journal of the Costume Culture
    • /
    • v.23 no.3
    • /
    • pp.523-536
    • /
    • 2015
  • Corporate association-which refers to consumers' beliefs, knowledge, perceptions, and evaluations of a corporation -can affect consumers' purchasing intentions. Corporate association consists of corporate ability association and corporate social responsibility association. Corporate ability association refers to a company's product quality, corporate innovation, productivity, consumer orientation, and after service. Corporate social responsibility association, which refers to the social perspective a company has of its responsibility to society, can affect corporate image and consumers' purchasing intentions. Eco-labeling for protecting and sustaining the environment is one of the important green marketing strategies in the fashion business that can influence corporate association and consumers' purchasing intentions. The purpose of this study was to investigate the effect of consumers' eco-label recognition on their corporate association and intentions to purchase eco-friendly fashion products. Questionnaires were distributed to consumers. The 263 usable questionnaires that were returned were analyzed by descriptive statistics, Cronbach's alpha, factor analysis, regression analysis, and t-test. The results were as follows: There was a significant effect of eco-label recognition on corporate association (ability association and social responsibility association). Eco-label recognition and corporate association were found to significantly affect consumers' purchasing intentions. Regarding the eco-friendly fashion product buying experience, there was no significant difference on corporate association and buying intention, but there was significant difference on eco-label recognition.

우리나라의 브랜드 쌀 생산 및 이용현황

  • 최해춘
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2002.08a
    • /
    • pp.46-53
    • /
    • 2002
  • The self-sufficiency of rice production was attained in 1975 through development of Tongil-type high-yielding rices and rapid dissemination to farmers and innovation of cultivation technologies, so-called "green revolution" in Korea. It can be continued during the last twenty seven years except some years with meterological disasters. The national average of milled rice yield per ha was only 3.1 ton at the first half of 1960′s, but it drastically increased to 5.0 ton at the 2nd half of 1990′s. Also, the rice quality was highly improved through the continuous varietal improvement of high-yielding japonica rice cultivars. The amounts of rice stock will go beyond about 1.9 million tons in 2002 due to the recent continuos bumper rice crop and relatively rapid reducing in rice consumption. There are so many rice brands over 1,200 in Korea, but most of rice commodities are not enough controlled in terms of marketing quality and palatability of cooked rice. Although the most rice brands are not properly controlled in quality management, its average level of grain quality is largely improved through the continuously increased diffusion of newly-developed high-quality rice cultivars since 1991. The rapid construction of rice processing complex(RPC) since 1992 also accelerates the production and distribution of brand rices. Especially, about half of distribution amounts are covered by brand rice commodities of the agricultural cooperative associations. The rice is mainly consumed by the type of cooked rice. The amounts of rice consumption for food processing is only below 4% of total rice consumption. The processed rice foods is mainly consumed as various processed cooked rices, rice cakes, and rice wines.

  • PDF

Influence of Co incorporation on morphological, structural, and optical properties of ZnO nanorods synthesized by chemical bath deposition

  • Iwan Sugihartono;Novan Purwanto;Desy Mekarsari;Isnaeni;Markus Diantoro;Riser Fahdiran;Yoga Divayana;Anggara Budi Susila
    • Advances in materials Research
    • /
    • v.12 no.3
    • /
    • pp.179-192
    • /
    • 2023
  • We have studied the structural and optical properties of the non-doped and Co 0.08 at.%, Co 0.02 at.%, and Co 0.11 at.% doped ZnO nanorods (NRs) synthesized using the simple low-temperature chemical bath deposition (CBD) method at 95℃ for 2 hours. The scanning electron microscope (SEM) images confirmed the morphology of the ZnO NRs are affected by Co incorporation. As observed, the Co 0.08 at.% doped ZnO NRs have a larger dimension with an average diameter of 153.4 nm. According to the International Centre for Diffraction Data (ICDD) number #00-036-1451, the x-ray diffraction (XRD) pattern of non-doped and Co-doped ZnO NRs with the preferred orientation of ZnO NRs in the (002) plane possess polycrystalline hexagonal wurtzite structure with the space group P63mc. Optical absorbance indicates the Co 0.08 at.% doped ZnO NRs have stronger and blueshift bandgap energy (3.104 ev). The room temperature photoluminescence (PL) spectra of ZnO NRs exhibited excitonicrelates ultraviolet (UV) and defect-related green band (GB) emissions. By calculating the UV/GB intensity, the Co 0.08 at.% is the proper atomic percentage to have fewer intrinsic defects. We predict that Co-doped ZnO NRs induce a blueshift of near band edge (NBE) emission due to the Burstein-Moss effect. Meanwhile, the redshift of NBE emission is attributed to the modification of the lattice dimensions and exchange energy.

Quantitative analysis method for zingiber officinale water extract using high-performance liquid chromatography

  • Mohd S. Md Sarip;Nik M.A. Nik Daud;Mohd A. Mohd Zainudin;Lokman H. Ibrahim;Syahrul A. Saidi;Zuhaili Idham;Adilah Anuar
    • Advances in materials Research
    • /
    • v.13 no.3
    • /
    • pp.233-241
    • /
    • 2024
  • Quantitative analysis of the Zingiber Officinale sample using subcritical water extraction (SWE) was developed employing High-Performance Liquid Chromatography (HPLC) to bolster the advancement of this innovative green extraction process. This research focuses on three principal ginger bioactive compounds: 6-gingerol, 6-shagoal, and 10-gingerol. Various stages were undertaken to establish the quantitative analysis method, encompassing the optimisation of HPLC operating conditions and the formulation of standard calibration curves, yielding individual compound equations. A robust correlation within the calibration curve was achieved, exhibiting an r2 value of 0.9814 and an RSD of 5.00%. A simultaneous, swift, and dependable method was established with an injection time of 20 minutes and an 8-minute delay between injections, in contrast to the previous HPLC analysis requiring a 45-minute injection time for detecting and quantifying all components. Notably, no post-treatment was applied after the SWE process. This advancement allows for potential future online measurement of Zingiber Officinale bioactive compounds extracted using subcritical water extraction through this technology.

Optimizing Nitrobenzene Synthesis Catalyzed by Sulfated Silica (SO4/SiO2) through Response Surface Methodological Approach

  • Aan Sabilladin;Aldino Javier Saviola;Karna Wijaya;Aulia Sukma Hutama;Mokhammad Fajar Pradipta;Wahyu Dita Saputri;Hilda Ismail;Budhijanto Budhijanto;Won-Chun Oh;Balasubramani Ravindran
    • Korean Journal of Materials Research
    • /
    • v.34 no.7
    • /
    • pp.341-354
    • /
    • 2024
  • Today, the principles of green chemistry are being fundamentally applied in the chemical industry, such as the nitrobenzene industry, which is an essential intermediate for various commercial products. Research on the application of response surface methodology (RSM) to optimize nitrobenzene synthesis was conducted using a sulfated silica (SO4/SiO2) catalyst and batch microwave reactor. The nitrobenzene synthesis process was carried out according to RSM using a central composite design (CCD) design for three independent variables, consisting of sulfuric acid concentration on the silica (%), stirring time (min), and reaction temperature (℃), and the response variable of nitrobenzene yield (%). The results showed that a three-factorial design using the response surface method could determine the optimum conditions for obtaining nitrobenzene products in a batch microwave reactor. The optimum condition for a nitrobenzene yield of 63.38 % can be obtained at a sulfuric acid concentration on the silica of 91.20 %, stirring time of 140.45 min, and reaction temperature of 58.14 ℃. From the 20 experiments conducted, the SO4/SiO2 catalyst showed a selectivity of 100 %, which means that this solid acid catalyst can potentially work well in converting benzene to nitrobenzene.

A Demand forecasting for Electric vehicles using Choice Based Multigeneration Diffusion Model (선택기반 다세대 확산모형을 이용한 전기자동차 수요예측 방법론 개발)

  • Chae, Ah-Rom;Kim, Won-Kyu;Kim, Sung-Hyun;Kim, Byung-Jong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.5
    • /
    • pp.113-123
    • /
    • 2011
  • Recently, the global warming problem has arised around world, many nations has set up a various regulations for decreasing $CO_2$. In particular, $CO_2$ emissions reduction effect is very powerful in transport part, so there is a rising interest about development of green car, or electric vehicle in auto industry. For this reason, it is important to make a strategy for charging infra and forcast electric power demand, but it hasn't introduced about demand forecasting electric vehicle. Thus, this paper presents a demand forecasting for electric vehicles using choice based multigeneration diffusion model. In this paper, it estimates innovation coefficient, immitation coefficient in Bass model by using hybrid car market data and forecast electric vehicle market by year using potential demand market through SP(Stated Preference) experiment. Also, It facilitates more accurate demand forecasting electric vehicle market refelcting multigeneration diffusion model in accordance with attribute progress in development of electric vehicle. Through demand forecasting methodology in this paper, it can be utilized power supply and building a charging infra in the future.