Acknowledgement
이 연구는 환경부의 재원으로 국립낙동강생물자원관에서 지원(NNIBR202303113)과 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(NRF-2021R1A2C2005148).
References
- Benemann, J. R. 1997. CO2 mitigation with microalgae systems. Energ. Convers. Manage. 38, S475-S479. https://doi.org/10.1016/S0196-8904(96)00313-5
- Wang, B., Y. Li, N. Wu, CQ, Lan. 2008. CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechnol. 79, 707-718. https://doi.org/10.1007/s00253-008-1518-y
- Borowitzka, M. A. 2013. High-value products from microalgae-their development and commercialisation. J. Appl. Phycol. 25, 743-756. https://doi.org/10.1007/s10811-013-9983-9
- Joshi, S., R. Kumari and V. N. Upasani. 2018. Applications of algae in cosmetics: An overview. Int. J. Innov. Res. Sci. Eng. Technol. 7, 1269-1278.
- Kim, Z.-H., H. Park, Y.-J. Ryu, D.-W. Shin, S.-J. Hong, H.-L. Tran, S.-M. Lim, and C.-G. Lee. 2015. Algal biomass and biodiesel production by utilizing the nutrients dissolved in seawater using semi-permeable membrane photobioreactors. J. Appl. Phycol. 27, 1763-1773. https://doi.org/10.1007/s10811-015-0556-y
- Hong, S.-J., K.-J. Yim, Y.-J. Ryu, C.-G. Lee, H.-J. Jang, J.-Y. Jung, and Z.-H. Kim. 2022. Improvement of Lutein and Zeaxanthin Production in Mychonastes sp. 247 by Optimizing Light Intensity and Culture Salinity Conditions. J. Microbiol. Biotechnol. 33, 1-8.
- Bhuyar, P., S. Sundararaju, M. H. A.Rahim, R. Ramaraj, G. P. Maniam, and N. Govindan. 2021. Microalgae cultivation using palm oil mill effluent as growth medium for lipid production with the effect of CO2 supply and light intensity. Biomass Convers. Biorefin. 11, 1555-1563. https://doi.org/10.1007/s13399-019-00548-5
- Chang, H. X., Y. Huang, Q. Fu, Q. Liao, and X. Zhu. 2016. Kinetic characteristics and modeling of microalgae Chlorella vulgaris growth and CO2 biofixation considering the coupled effects of light intensity and dissolved inorganic carbon. Bioresour. Technol. 206, 231-238. https://doi.org/10.1016/j.biortech.2016.01.087
- Yim, K.-J., H. Park, C.-S. Lee, B.-Y. Jo, S.-W. Nam, C.-G. Lee, and Z.-H. Kim. 2019. Effects of Nitrogen and Phosphorus Starvation on Growth and Fatty Acid Production in Newly Isolated Two Freshwater Green Microalgae from Nakdonggang River. J. Mar. Biotechnol. 11, 81-88 https://doi.org/10.15433/KSMB.2019.11.2.081
- Park, H., K.-. Yim, J.-H. Min, S.-M. Kang, C.-W. Han, C.-S. Lee, J.-Y. Jung, S.-J. Hong, C.-G. Lee, and Z.-H. Kim. 2020. Investigation on Media Composition for Cultivation of a Newly Isolated Freshwater Microalga Parachlorella sp. to Enhance Fatty Acid Productivity. Microbiol. Biotechnol. Lett. 48, 328-336. https://doi.org/10.4014/mbl.1912.12020
- Kim, Z.-H., K. Kim, H. Park, C.-S. Lee, S.-W. Nam, K.-J. Yim, J.-Y. Jung, S.-J. Hong, and Lee, C.-G. 2021. Enhanced fatty acid productivity by Parachlorella sp., a freshwater microalga, via adaptive laboratory evolution under salt stress. Biotechnol. Bioprocess Eng. 26, 223-231. https://doi.org/10.1007/s12257-020-0001-1
- Azhand, N., A. Sadeghizadeh, and R. Rahimi. 2020. Effect of superficial gas velocity on CO2 capture from air by Chlorella vulgaris microalgae in an Airlift photobioreactor with external sparger. J. Environ. Chem. Eng. 8, 104022.
- Lee, H.-S., Z.-H. Kim, H. Park, and C.-G. Lee. 2016. Specific light uptake rates can enhance astaxanthin productivity in Haematococcus lacustris. Bioprocess Biosyst. Eng. 39, 815-823. https://doi.org/10.1007/s00449-016-1561-5
- Cabello, J., M. Morales, and S. Revah. 2017. Carbondioxide consumption of the microalga Scenedesmus obtusiusculus under transient inlet CO2 concentration variations. Sci. Total Environ. 584, 1310-1316. https://doi.org/10.1016/j.scitotenv.2017.02.002
- Jeon, H., Y. Lee, K.-S. Chang, C.-G. Lee, and E. Jin. 2013. Enhanced production of biomass and lipids by sup plying CO2 in marine microalga Dunaliella sp. J. Microbiol. 51, 773-776. https://doi.org/10.1007/s12275-013-3256-9
- Aslam, A., S. R. Thomas-Hall, T. Mughal, Q. U. Zaman, N. Ehsan, S. Javied, and P. M. Schenk. 2019. Heavy metal bioremediation of coal-fired flue gas using microalgae under different CO2 concentrations. J. Environ. Manage. 241, 243-250. https://doi.org/10.1016/j.jenvman.2019.03.118
- Qiang, H. and A. Richmond. 1996. Productivity and photosynthetic efficiency of Spirulina platensis as affected by light intensity, algal density and rate of mixing in a flat plate photobioreactor. J. Appl. Psychol. 8, 139-145.
- Choi, S.-L., I.-S. Suh, and C.-G. Lee. 2003. Lumostatic operation of bubble column photobioreactors for Haemat ococcus pluvialis cultures using a specific light uptake rate as a control parameter. Enzyme Microb. Technol. 33, 403-409. https://doi.org/10.1016/S0141-0229(03)00137-6
- Lee, H.-S., M.-W. Seo, Z.-H. Kim, and C.-G. Lee. 2006. Determining the best specific light uptake rates for the lumostatic cultures in bubble column photobioreactors. nzyme Microb. Technol. 39, 447-452. https://doi.org/10.1016/j.enzmictec.2005.11.038
- Yoon, J.-H., J.-H. Shin, E.-K. Ahn, and T.-H. Park. 2008. High cell density culture of Anabaena variabilis with controlled light intensity and nutrient supply. J. Microbiol. Biotechnol. 18, 918-925.
- Chen, X., Q. Y. Goh, W. Tan, I. Hossain, W. N. Chen, and R. Lau. 2011. Lumostatic strategy for microalgae cultivation utilizing image analysis and chlorophyll a content as design parameters. Bioresour. Technol. 102, 6005-6012. https://doi.org/10.1016/j.biortech.2011.02.061