DOI QR코드

DOI QR Code

가스공급속도 및 광도조절을 이용한 담수미세조류 Parachlorella sp.의 바이오매스 생산성 향상

Improving Biomass Productivity of Freshwater microalga, Parachlorella sp. by Controlling Gas Supply Rate and Light Intensity in a Bubble Column Photobioreactor

  • 김지훈 ((주)휴에버그린팜) ;
  • 임경준 (국립낙동강생물자원관 미생물연구실) ;
  • 홍성주 (인하대학교 생명공학과 & 산학융합 인터랙티브 바이오공정 혁신 교육연구단) ;
  • 장희수 (인하대학교 산업과학기술연구소) ;
  • 장현진 (제주대학교 식품영양학과) ;
  • 윤석민 (국립낙동강생물자원관 미생물연구실) ;
  • 이승환 (전남대학교 생물공학과) ;
  • 이철균 (인하대학교 생명공학과 & 산학융합 인터랙티브 바이오공정 혁신 교육연구단) ;
  • 이창수 (국립낙동강생물자원관 미생물연구실)
  • Z-Hun Kim (Huevergreenpharm Inc.) ;
  • Kyung Jun Yim (Microbial Research Department, Nakdonggang National Institute of Biological Resources) ;
  • Seong-Joo Hong (Department of Biological Engineering & Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University) ;
  • Huisoo Jang (Industrial Science and Technology Research Institute, Inha University) ;
  • Hyun-Jin Jang (Department of Food Science and Nutrition, Jeju National University) ;
  • Suk Min Yun (Microbial Research Department, Nakdonggang National Institute of Biological Resources) ;
  • Seung Hwan Lee (Department of Biotechnology and Bioengineering, Chonnam National University) ;
  • Choul-Gyun Lee (Department of Biological Engineering & Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University) ;
  • Chang Soo Lee (Microbial Research Department, Nakdonggang National Institute of Biological Resources)
  • 투고 : 2023.05.10
  • 심사 : 2023.08.08
  • 발행 : 2023.12.31

초록

The objective of the present study was to improve the biomass productivity of newly isolated freshwater green microalga Parachlorella sp. This was accomplished by culture conditions optimization, including CO2 concentration, superficial gas velocity, and light intensity, in 0.5 L bubble column photobioreactors. The supplied CO2 concentration and gas velocity varied from 0.032% (air) to 10% and 0.02 m/s - 0.11 m/s, respectively, to evaluate their effects on growth kinetics. Next, to maximize the production rate of Parachlorella sp., a lumostatic operation based on a specific light uptake rate (qe) was applied. From these results, the optimal CO2 concentration in the supplied gas and the gas velocity were determined to be 5% and 0.064 m/s, respectively. For the lumostatic operation at 10.2 µmol/g/s, biomass productivity and photon yield showed significant increases of 83% and 66%, respectively, relative to cultures under constant light intensity. These results indicate that the biomass productivity of Parachlorella sp. can be improved by optimizing gas properties and light control as cell concentrations vary over time.

키워드

과제정보

이 연구는 환경부의 재원으로 국립낙동강생물자원관에서 지원(NNIBR202303113)과 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(NRF-2021R1A2C2005148).

참고문헌

  1. Benemann, J. R. 1997. CO2 mitigation with microalgae systems. Energ. Convers. Manage. 38, S475-S479. https://doi.org/10.1016/S0196-8904(96)00313-5
  2. Wang, B., Y. Li, N. Wu, CQ, Lan. 2008. CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechnol. 79, 707-718. https://doi.org/10.1007/s00253-008-1518-y
  3. Borowitzka, M. A. 2013. High-value products from microalgae-their development and commercialisation. J. Appl. Phycol. 25, 743-756. https://doi.org/10.1007/s10811-013-9983-9
  4. Joshi, S., R. Kumari and V. N. Upasani. 2018. Applications of algae in cosmetics: An overview. Int. J. Innov. Res. Sci. Eng. Technol. 7, 1269-1278.
  5. Kim, Z.-H., H. Park, Y.-J. Ryu, D.-W. Shin, S.-J. Hong, H.-L. Tran, S.-M. Lim, and C.-G. Lee. 2015. Algal biomass and biodiesel production by utilizing the nutrients dissolved in seawater using semi-permeable membrane photobioreactors. J. Appl. Phycol. 27, 1763-1773. https://doi.org/10.1007/s10811-015-0556-y
  6. Hong, S.-J., K.-J. Yim, Y.-J. Ryu, C.-G. Lee, H.-J. Jang, J.-Y. Jung, and Z.-H. Kim. 2022. Improvement of Lutein and Zeaxanthin Production in Mychonastes sp. 247 by Optimizing Light Intensity and Culture Salinity Conditions. J. Microbiol. Biotechnol. 33, 1-8.
  7. Bhuyar, P., S. Sundararaju, M. H. A.Rahim, R. Ramaraj, G. P. Maniam, and N. Govindan. 2021. Microalgae cultivation using palm oil mill effluent as growth medium for lipid production with the effect of CO2 supply and light intensity. Biomass Convers. Biorefin. 11, 1555-1563. https://doi.org/10.1007/s13399-019-00548-5
  8. Chang, H. X., Y. Huang, Q. Fu, Q. Liao, and X. Zhu. 2016. Kinetic characteristics and modeling of microalgae Chlorella vulgaris growth and CO2 biofixation considering the coupled effects of light intensity and dissolved inorganic carbon. Bioresour. Technol. 206, 231-238. https://doi.org/10.1016/j.biortech.2016.01.087
  9. Yim, K.-J., H. Park, C.-S. Lee, B.-Y. Jo, S.-W. Nam, C.-G. Lee, and Z.-H. Kim. 2019. Effects of Nitrogen and Phosphorus Starvation on Growth and Fatty Acid Production in Newly Isolated Two Freshwater Green Microalgae from Nakdonggang River. J. Mar. Biotechnol. 11, 81-88
  10. Park, H., K.-. Yim, J.-H. Min, S.-M. Kang, C.-W. Han, C.-S. Lee, J.-Y. Jung, S.-J. Hong, C.-G. Lee, and Z.-H. Kim. 2020. Investigation on Media Composition for Cultivation of a Newly Isolated Freshwater Microalga Parachlorella sp. to Enhance Fatty Acid Productivity. Microbiol. Biotechnol. Lett. 48, 328-336. https://doi.org/10.4014/mbl.1912.12020
  11. Kim, Z.-H., K. Kim, H. Park, C.-S. Lee, S.-W. Nam, K.-J. Yim, J.-Y. Jung, S.-J. Hong, and Lee, C.-G. 2021. Enhanced fatty acid productivity by Parachlorella sp., a freshwater microalga, via adaptive laboratory evolution under salt stress. Biotechnol. Bioprocess Eng. 26, 223-231. https://doi.org/10.1007/s12257-020-0001-1
  12. Azhand, N., A. Sadeghizadeh, and R. Rahimi. 2020. Effect of superficial gas velocity on CO2 capture from air by Chlorella vulgaris microalgae in an Airlift photobioreactor with external sparger. J. Environ. Chem. Eng. 8, 104022.
  13. Lee, H.-S., Z.-H. Kim, H. Park, and C.-G. Lee. 2016. Specific light uptake rates can enhance astaxanthin productivity in Haematococcus lacustris. Bioprocess Biosyst. Eng. 39, 815-823. https://doi.org/10.1007/s00449-016-1561-5
  14. Cabello, J., M. Morales, and S. Revah. 2017. Carbondioxide consumption of the microalga Scenedesmus obtusiusculus under transient inlet CO2 concentration variations. Sci. Total Environ. 584, 1310-1316. https://doi.org/10.1016/j.scitotenv.2017.02.002
  15. Jeon, H., Y. Lee, K.-S. Chang, C.-G. Lee, and E. Jin. 2013. Enhanced production of biomass and lipids by sup plying CO2 in marine microalga Dunaliella sp. J. Microbiol. 51, 773-776. https://doi.org/10.1007/s12275-013-3256-9
  16. Aslam, A., S. R. Thomas-Hall, T. Mughal, Q. U. Zaman, N. Ehsan, S. Javied, and P. M. Schenk. 2019. Heavy metal bioremediation of coal-fired flue gas using microalgae under different CO2 concentrations. J. Environ. Manage. 241, 243-250. https://doi.org/10.1016/j.jenvman.2019.03.118
  17. Qiang, H. and A. Richmond. 1996. Productivity and photosynthetic efficiency of Spirulina platensis as affected by light intensity, algal density and rate of mixing in a flat plate photobioreactor. J. Appl. Psychol. 8, 139-145.
  18. Choi, S.-L., I.-S. Suh, and C.-G. Lee. 2003. Lumostatic operation of bubble column photobioreactors for Haemat ococcus pluvialis cultures using a specific light uptake rate as a control parameter. Enzyme Microb. Technol. 33, 403-409. https://doi.org/10.1016/S0141-0229(03)00137-6
  19. Lee, H.-S., M.-W. Seo, Z.-H. Kim, and C.-G. Lee. 2006. Determining the best specific light uptake rates for the lumostatic cultures in bubble column photobioreactors. nzyme Microb. Technol. 39, 447-452. https://doi.org/10.1016/j.enzmictec.2005.11.038
  20. Yoon, J.-H., J.-H. Shin, E.-K. Ahn, and T.-H. Park. 2008. High cell density culture of Anabaena variabilis with controlled light intensity and nutrient supply. J. Microbiol. Biotechnol. 18, 918-925.
  21. Chen, X., Q. Y. Goh, W. Tan, I. Hossain, W. N. Chen, and R. Lau. 2011. Lumostatic strategy for microalgae cultivation utilizing image analysis and chlorophyll a content as design parameters. Bioresour. Technol. 102, 6005-6012. https://doi.org/10.1016/j.biortech.2011.02.061