• Title/Summary/Keyword: green electronics

Search Result 389, Processing Time 0.029 seconds

Multi-level Modeling and Simulation for Sustainable Energy (대체 에너지의 다중레벨 모델링과 시뮬레이션)

  • van Duijsen, P.J.;Oh, Yong-Taek
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.3 no.1
    • /
    • pp.15-24
    • /
    • 2011
  • Modeling and simulation for Green Energy depends largely on the type of system under investigation. The topics are very wide ranging from semiconductor physics (solar), electrical motor/generator (wind turbines), power electronics (grid connections) to typical control strategies. To correctly model these technologies requires a broad set of models and various simulation techniques. To further refine or detail the simulation the modeling has to be performed on a specific level, being system, circuit or component level. Combinations of several levels allows gradually improving the validity of the overall model against available parameters and model equations.

  • PDF

LTCC and LTCC-M Technologies for Multichip Module (Multichip module 개발을 위한 LTCC 밀 LTCC-M 기술)

  • 박성대;강현규;박윤휘;문제도
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.3
    • /
    • pp.25-35
    • /
    • 1999
  • LTCC (Low Temperature Cofired Ceramic) or LTCC-M (Low Temperature Cofired ceramic on Metal) technology is one of MCM-C (Multichip Module on Ceramic) technologies and becomes to be widely used in consumer, RF and automotive electronics. As green sheets for LTCC are cofired below $1000^{\circ}C$ in comparison with those for HTCC (High Temperature Cofired Ceramic), high conductivity metal traces such as gold, silver and copper can be used. The dimensional stability in LTCC-M technology enables embedded passives to be integrated inside modules, which enhances the electrical performance and increases the reliability of the modules. Coefficient of thermal expansion and dielectric constant can be controlled by changing composition and heating profile for cofiring. In this technical review, LTCC and LTCC-M technologies are introduced and advantages of those technologies are explained.

  • PDF

Assessment of Input Impedance of an Axial Slot Antenna on a Sectoral Cylindrical Cavity Excited by Probe using Method of Moments

  • Wongsan, Rangsan;Phongcharoenpanich, Chuwong;Krairiksh, Monai
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.731-734
    • /
    • 2002
  • This paper presents the assessment of input impedance of a sectoral cylindrical cavity-backed slot antenna excited by a probe. This antenna is proposed to be an element of array that can be assembled to be the antenna for UHF TV broadcasting system. The integral equations are derived based on boundary conditions of the proposed structure and are expressed in terms of dyadic Green's functions and unknown currents. The unknown current densities are solved by the Method of Moments and the input impedance is derived subsequently. Numerical results show the variation of input impedance, for the specified dimensions of the antenna, as a function of frequency. This result is validated by measurement and found that the result is sufficiently accurate. The result from this study is useful for the design of a sectoral cylindrical cavity-backed slot antenna excited by a probe.

  • PDF

Focal Reducer for CQUEAN

  • Lim, Ju-Hee;Chang, Seung-Hyuk;Kim, Young-Ju;Kim, Jin-Young;Park, Won-Kee;Im, Myung-Shin;Pak, Soo-Jong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.62.2-62.2
    • /
    • 2010
  • The CQUEAN (Camera for QUasars in EArly uNiverse) is an optical CCD camera optimized for the observation of high redshift QSOs to understand the nature of early universe. The focal reducer, which is composed of four spherical lens, is allowed to secure a wider field of view for CQUEAN, by reducing the focal length of the system by one third. We designed the lens configuration, the lens barrel, and the adapters to assemble to attach focal reducer to the CCD camera system. We performed tolerance analysis using ZEMAX. The manufacturing of the focal reducer system and its lab test of optical performance were already finished. It turned out that the performance can meet the original requirement, with the aberration and alignment error taken into account. We successfully attached the focal reducer and CQUEAN to the cassegrain focus of 2.1m telescope at McDonald Observatory, USA, and several tests of CQUEAN system were carried out. In this presentation, I will show the process of focal reducer fabrication and the result of performance test.

  • PDF

Power Consumption Pattern Analysis of Home Appliances for DC-based Green Smart Home

  • Seo, Gab-Su;Baek, Jong-Bok;Bak, Chul-Woo;Bae, Hyun-Su;Cho, Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.240-241
    • /
    • 2010
  • Research on modification and replacement of conventional AC distribution system to DC distribution system has been widely conducted. When DC system is applied, it is possible to improve energy transferring efficiency because most of the home appliances are electric loads which require DC input voltage. Furthermore, compatibility with renewable energy sources and secondary batteries should be improved as they are DC based power sources. To design energy efficient DC system, it is important to understand the load characteristics of the electric devices. In this paper, the electric appliances are classified to 3 types: motor, heating, and electric loads and their typical power consumptions are shown. Load patterns of load which can be used in analyzing the designed system are modeled according the statistics. Feasibility of the developed load patterns are verified by applying it in distribution system design tool.

  • PDF

Compact and Flexible Monopole Antenna for Ultra-Wideband Applications Deploying Fractal Geometry

  • Geetha, G;Palaniswamy, Sandeep Kumar;Alsath, M. Gulam Nabi;Kanagasabai, Malathi;Rao, T. Rama
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.400-405
    • /
    • 2018
  • This paper presents a compact ultra-wideband (UWB) flexible monopole antenna design on a paper substrate. The proposed antenna is made of iterations of a circular slot inside an octagonal metallic patch. This fractal-based geometry has been deployed to achieve compactness along with improved bandwidth, measured reflection coefficient -10 dB bandwidth ranging from 2.7 to 15.8 GHz. The overall size of the antenna is $26mm{\times}19mm{\times}0.5mm$, which makes it a compact one. The substrate used is paper and the main features like environment friendly, flexibility, green electronics applications and low cost of fabrication are the key factors for the proposed antenna. The aforementioned UWB prototype is suitable for many wireless communication systems such as WiMAX, WiFi, RFID and WSN applications. Antenna has been tested for the effect of bending by placing it over a curved surface of a very small radius of 10 mm.

Evaluation of illuminant effect of NIR(Near Infrared Radiation) using spectrophotometer for medicine (의학용 분광광도계를 이용한 근적외선 대역의 조명 영향평가)

  • Lee, Sangsik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.4
    • /
    • pp.16-22
    • /
    • 2010
  • In this paper, we evaluated the effect with respect to the light of 700-1,100 nm NIR(near infrared radiation) for spectrophotometer. Standard, red, yellow, green and blue color paper which was Munsell color paper were used for experiments. Our used light is incandescent lamp, fluorescent lamp, invert fluorescent lamp and combined lamp. Each color paper was measured 20 times. Therefore we concluded that it is possible to build a spectrophotometer for NIR(near infrared radiation) measurement we applied an spectrophotometer to measurement system in incandescent lamp.

  • PDF

Recent Research Trend of Zinc-ion Secondary Battery Materials for Next Generation Batterie (차세대 이차전지용 아연 이온 이차전지 소재 연구 개발 동향)

  • Jo, Jeonggeun;Kim, Jaekook
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.312-330
    • /
    • 2018
  • Energy storage/conversion has become crucial not only to meet the present energy demand but also more importantly to sustain the modern society. Particularly, electrical energy storage is critical not only to support electronic, vehicular and load-levelling applications but also to efficiently commercialize renewable energy resources such as solar and wind. While Li-ion batteries are being intensely researched for electric vehicle applications, there is a pressing need to seek for new battery chemistries aimed at stationary storage systems. In this aspect, Zn-ion batteries offer a viable option to be utilized for high energy and power density applications since every intercalated Zn-ion yields a concurrent charge transfer of two electrons and thereby high theoretical capacities can be realized. Furthermore, the simplicity of fabrication under open-air conditions combined with the abundant and less toxic zinc element makes aqueous Zn-ion batteries one of the most economical, safe and green energy storage technologies with prospective use for stationary grid storage applications. Also, Zn-ion batteries are very safe for next-generation technologies based on flexible, roll-up, wearable implantable devices the portable electronics market. Following this advantages, a wide range of approaches and materials, namely, cathodes, anodes and electrolytes have been investigated for Zn-ion batteries applications to date. Herein, we review the progresses and major advancements related to aqueous. Zn-ion batteries, facilitating energy storage/conversion via $Zn^{2+}$ (de)intercalation mechanism.

Green Computing Design and Implementation Using Job Management Scheduling (작업관리를 이용한 그린 컴퓨팅 설계 및 구축)

  • Lee, Young-Joo;Sung, Jin-Woo;Jang, Ji-Hoon;Park, Chan-Yeol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.1171-1173
    • /
    • 2012
  • 이제는 하나뿐인 지구를 지키고 살리는 녹색혁명의 시대에 살고 있다. 이에 따라 컴퓨팅의 환경도 그린 컴퓨팅 환경으로 바뀌어지고 있다. 그린 컴퓨팅은 컴퓨팅 작업에 소모되는 에너지를 줄여보자는 것으로서 컴퓨터에 대한 전력을 절감함으로써 에너지 비용 절감, 저탄소 환경으로 구성하는 것이다. 그린 컴퓨팅은 녹색 ICT(Information & Communication Technology)의 일환으로, 컴퓨터 자체를 움직이는 여러 에너지들 뿐만 아니라 컴퓨터의 냉각과 구동 및 주변기가들을 작동시키는데 소모되는 전력 등을 줄이기 위해서 CPU나 GPU등 각종 프로세서들의 재설계, 대체에너지 등을 활용하는 방안 등 탄소배출을 최소화시키는 등의 환경을 보호하는 개념의 컴퓨팅이다. Christian Belady 2007년 2월, Electronics Cooling Magazine의 통계에 의하면 2001년에는 인프라 비용과 전력 비용의 합이 서버의 가격과 같았고, 2004년에는 인프라 비용이 서버 비용과 같아졌다. 그런데, 2008년에는 에너지 비용 하나만으로도 서버 비용과 같아졌다는 것을 알 수 있습니다. 이제 그린 IT, 그린 컴퓨팅은 하면 좋고, 안하고 말고가 아닌 하지 않으면 생존할 수 없는 필수적인 것으로 되어가고 있다. 본 논문에서는 KISTI 슈퍼컴퓨터에서의 그린 컴퓨팅을 구현하기 위하여 먼저 이를 적용하기 위한 서버 시스템을 설계 구축하고 각각의 프로그램을 개발하여 테스트하였다.

Effect of Electrochemical Treatment on the Chlorine Generation Efficiency of Ballast Water in the Brackish Zone (기수지역 선박평형수의 염소 생성 효율에 미치는 전기화학 처리의 영향)

  • Choi, Yong-Sun;Lee, You-Kee
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.16-22
    • /
    • 2019
  • Indirect oxidation using chlorine species oxidizing agents is often effective in wastewater treatment using an electrochemical oxidation process. When chlorine ions are contained in the wastewater, oxidizing agents of various chlorine species are produced during electrolysis. In a ballast water management system, it is also used to treat ballast water by electrolyzing seawater to produce a chlorine species oxidizer. However, ballast water in the brackish zone and some wastewater has a low chlorine ion concentration. Therefore, it is necessary to study the chlorine generation current efficiency at various chlorine concentration conditions. In this study, the chlorine generating current efficiency of a boron-doped diamond(BDD) electrode and insoluble electrodes are compared with various chloride ion concentrations. The results of this study show that the current efficiency of the BDD electrode is better than that of the insoluble electrodes. The chlorine generation current efficiency is better in the order of BDD, MMO(mixed metal oxide), $Ti/RuO_2$, and $Ti/IrO_2$ electrodes. In particular, when the concentration of sodium chloride is 10 g/L or less, the current efficiency of the BDD electrode is excellent.