Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.1.16

Effect of Electrochemical Treatment on the Chlorine Generation Efficiency of Ballast Water in the Brackish Zone  

Choi, Yong-Sun (Dept. of Information & Electronics Engineering, Uiduk University)
Lee, You-Kee (Division of Green Energy Engineering, Uiduk University)
Publication Information
Korean Journal of Materials Research / v.29, no.1, 2019 , pp. 16-22 More about this Journal
Abstract
Indirect oxidation using chlorine species oxidizing agents is often effective in wastewater treatment using an electrochemical oxidation process. When chlorine ions are contained in the wastewater, oxidizing agents of various chlorine species are produced during electrolysis. In a ballast water management system, it is also used to treat ballast water by electrolyzing seawater to produce a chlorine species oxidizer. However, ballast water in the brackish zone and some wastewater has a low chlorine ion concentration. Therefore, it is necessary to study the chlorine generation current efficiency at various chlorine concentration conditions. In this study, the chlorine generating current efficiency of a boron-doped diamond(BDD) electrode and insoluble electrodes are compared with various chloride ion concentrations. The results of this study show that the current efficiency of the BDD electrode is better than that of the insoluble electrodes. The chlorine generation current efficiency is better in the order of BDD, MMO(mixed metal oxide), $Ti/RuO_2$, and $Ti/IrO_2$ electrodes. In particular, when the concentration of sodium chloride is 10 g/L or less, the current efficiency of the BDD electrode is excellent.
Keywords
ballast water; brackish zone; current efficiency; boron-doped diamond; insoluble electrodes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. C. Chiang, J. E. Chang and T. C. Wen, Water Res., 29, 671 (1995).   DOI
2 C. A. Martinez-Huitle and S. Ferroa, Chem. Soc. Rev., 35, 1324 (2006).   DOI
3 S. Chen, W. Hu, J. Hong and S. Sandoe, Mar. Pollut. Bull., 105, 319 (2016).   DOI
4 E. Lacasa, E. Tsolaki, Z. Sbokou, M. A. Rodrigo, D. Mantzavinos and E. Diamadopoulos, Chem. Eng. J., 223, 516 (2013).   DOI
5 Y. S. Choi, Y. K. Lee, J. Y. Kim and Y. K. Lee, Korean J. Mater. Res., 28, 301 (2018).   DOI
6 K. Benzhour, J. Szatkowski, F. Rozploch and K. Stec, Acta Phys. Pol. A, 118, 447 (2010).   DOI
7 A. Tallaire, C. Rond, F. Benedic, O. Brinza, J. Achard, F. Silva and A. Gicquel, Phys. Status Solidi A, 208, 2028 (2011).   DOI
8 D. Zhou, D. M. Gruen, L. C. Qin, T. G. McCauley and A. R. Krauss, J. Appl. Phys., 84, 1981 (1998).   DOI
9 J. J. Gracio, Q. H. Fan and J. C. Madaleno, J. Phys. D: Appl. Phys., 43, 374017 (2010).   DOI
10 L. Lin, J. Wang, J. Weng, X. Cui and Y. Zhang, Plasma Sci. Tech., 17, 216 (2015).   DOI
11 Y. Zhang, F. Zhang, Q. J. Gao, D. P. Yu, X. F. Peng and Z. D. Lin, Chin. Phys. Lett., 18, 286 (2001).   DOI
12 B. J. Hernlem and L. S. Tsai, J. Food Sci., 65, 834 (2000).   DOI
13 M. Rajab, C. Heim, T. Letzel, J. E. Drewes and B. Helmreich, Chemosphere, 121, 47 (2015)   DOI
14 H. A. Hansen, I. C. Man, F. Studt, F. Abild-Pedersen, T. Bligaard and J. Rossmeisl, Phys. Chem. Chem. Phys., 12, 283 (2009).   DOI
15 G. Chen, Sep. Purif. Technol., 38, 11 (2004).   DOI
16 W. Miled, A. Haj Said and S. Roudesli, J. Text. Apparel, Technol. Manage., 6, 89 (2010).
17 R. Balaji, B. S. Kannan, J. Lakshmi, N. Senthil, S. Vasudevan, G. Sozhan, A. K. Shukla and S. Ravichandran, Electrochem. Comm., 11, 1700 (2009).   DOI
18 H. S. Lee, S. K. Kim, H. W. Seok, J. H. Kim, H. J. Choi and H. I. Jung, Korean J. Mater. Res., 22, 86 (2012).   DOI
19 T. Le Luu, J. Kim and J. Yoon, J. Ind. Eng. Chem., 21, 400 (2015).   DOI
20 V. Trieu, B. Schley, H. Natter, J. Kintrup, A. Bulan and R. Hempelmann, Electrochim. Acta, 78, 188 (2012).   DOI