• Title/Summary/Keyword: gray scale image

Search Result 258, Processing Time 0.029 seconds

Enhanced Fuzzy Binarization Method for Car License Plate Binarization (자동차번호판 이진화를 위한 개선된 퍼지 이진화 방법)

  • Cho, Jae-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.2
    • /
    • pp.231-236
    • /
    • 2011
  • The binarization algorithm frequently applies to one part of the preprocessing phase for a variety of image processing techniques such as image recognition and image analysis, etc. So it is important that binarization algorithm is determined by the selection of threshold value for binarization in image processing. The previous algorithms could get the proper threshold value in the case that shows all the difference of brightness between background and object, but if not, they could not get the proper threshold value. In this paper, we propose the efficient fuzzy binarization method which first, segments the brightness range of gray_scale images to 2 intervals to perform car license plate binarization and applies fuzzy member function to each intervals. The experiment for performance evaluation of the proposed binarization algorithm showed that the proposed algorithm generates the more effective threshold value than the previous algorithms in car license plate.

The Effect of Chromatic and Achromatic Colors on the Image of Korean Dress's Wearer (유채색과 무채색 배색이 한복 착용자의 이미지에 미치는 영향)

  • Kang, Kyung-Ja;Jeong, Bok-Nam;Moon, Ju-Young
    • The Research Journal of the Costume Culture
    • /
    • v.15 no.3 s.68
    • /
    • pp.496-509
    • /
    • 2007
  • The purpose of this research is to find out the effect of a chromatic Korean jacket and an achromatic Korean skirt on the visual image of a traditional Korean dress wearer. This experiment was designed to the 3 factors which were composed of 3 colors(red, yellow, green), 4 jacket tones(vivid, light, dull, dark), and 4 skirt colors(N9, N7, N4, N2). The 288 students in Gyeongsang National University assessed the 48 stimuli which wear variously incorporated with colors and tones by a semantic differential scale of 7-point: The results of the study were as follows. Image factors of stimuli are youth and activity, gracefulness, visibility, and tenderness. Among these, youth and activity factors, and gracefulness factors proved to be important. The colors and tones of a jacket and a skirt used in this experiment showed that the colors and tone had an effect on dimension of 4 images by interacting of two valuables or working independently. While a yellow jacket with vivid and a white(N9) skirt had a significant effect on youth and activity factors, a red jacket and a dark- gray(N4), -black(N2) skirt were evaluated as a graceful image. In the red jacket case, a visible factor was considerably different according to skirt tones. Only jacket tones worked as a striking clue in a tenderness factor.

  • PDF

A 2-Dimensional Barcode Detection Algorithm based on Block Contrast and Projection (블록 명암대비와 프로젝션에 기반한 2차원 바코드 검출 알고리즘)

  • Choi, Young-Kyu
    • The KIPS Transactions:PartB
    • /
    • v.15B no.4
    • /
    • pp.259-268
    • /
    • 2008
  • In an effort to increase the data capacity of one-dimensional symbology, 2D barcodes have been proposed a decade ago. In this paper, we present an effective 2D barcode detection algorithm from gray-level images, especially for the handheld 2D barcode recognition system. To locate the symbol inside the image, a criteria based on the block contrast is adopted, and a gray-scale projection with sub-pixel operation is utilized to segment the symbol precisely from the region of interest(ROI). Finally, the segmented ROI is normalized using the inverse perspective transformation for the following decoding processes. We also introduce the post-processing steps for decoding the QR-code. The proposed method ensures high performances under various lighting/printing conditions and strong perspective deformations. Experiments shows that our method is very robust and efficient in detecting the code area for the various types of 2D barcodes in real time.

A Comparison of Global Feature Extraction Technologies and Their Performance for Image Identification (영상 식별을 위한 전역 특징 추출 기술과 그 성능 비교)

  • Yang, Won-Keun;Cho, A-Young;Jeong, Dong-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.1
    • /
    • pp.1-14
    • /
    • 2011
  • While the circulation of images become active, various requirements to manage increasing database are raised. The content-based technology is one of methods to satisfy these requirements. The image is represented by feature vectors extracted by various methods in the content-based technology. The global feature method insures fast matching speed because the feature vector extracted by the global feature method is formed into a standard shape. The global feature extraction methods are classified into two categories, the spatial feature extraction and statistical feature extraction. And each group is divided by what kind of information is used, color feature or gray scale feature. In this paper, we introduce various global feature extraction technologies and compare their performance by accuracy, recall-precision graph, ANMRR, feature vector size and matching time. According to the experiments, the spatial features show good performance in non-geometrical modifications, and the extraction technologies that use color and histogram feature show the best performance.

Improvement of Bandwidth Efficiency for High Transmission Capacity of Contents Streaming Data using Compressive Sensing Technique (컨텐츠 스트리밍 데이터의 전송효율 증대를 위한 압축센싱기반 전송채널 대역폭 절감기술 연구)

  • Jung, Eui-Suk;Lee, Yong-Tae;Han, Sang-Kook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2141-2145
    • /
    • 2015
  • A new broadcasting signal transmission, which can save its channel bandwidth using compressive sensing(CS), is proposed in this paper. A new compression technique, which uses two dimensional discrete wavelet transform technique, is proposed to get high sparsity of multimedia image. A L1 minimization technique based on orthogonal matching pursuit is also introduced in order to reconstruct the compressed multimedia image. The CS enables us to save the channel bandwidth of wired and wireless broadcasting signal because various transmitted data are compressed using it. A $256{\times}256$ gray-scale image with compression rato of 20 %, which is sampled by 10 Gs/s, was transmitted to an optical receiver through 20-km optical transmission and then was reconstructed successfully using L1 minimization (bit error rate of $10^{-12}$ at the received optical power of -12.2 dB).

Binary CNN Operation Algorithm using Bit-plane Image (비트평면 영상을 이용한 이진 CNN 연산 알고리즘)

  • Choi, Jong-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.6
    • /
    • pp.567-572
    • /
    • 2019
  • In this paper, we propose an algorithm to perform convolution, pooling, and ReLU operations in CNN using binary image and binary kernel. It decomposes 256 gray-scale images into 8 bit planes and uses a binary kernel consisting of -1 and 1. The convolution operation of binary image and binary kernel is performed by addition and subtraction. Logically, it is a binary operation algorithm using the XNOR and comparator. ReLU and pooling operations are performed by using XNOR and OR logic operations, respectively. Through the experiments to verify the usefulness of the proposed algorithm, We confirm that the CNN operation can be performed by converting it to binary logic operation. It is an algorithm that can implement deep running even in a system with weak computing power. It can be applied to a variety of embedded systems such as smart phones, intelligent CCTV, IoT system, and autonomous car.

Improving Matching Performance of SURF Using Color and Relative Position (위치와 색상 정보를 사용한 SURF 정합 성능 향상 기법)

  • Lee, KyungSeung;Kim, Daehoon;Rho, Seungmin;Hwang, Eenjun
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.394-400
    • /
    • 2012
  • SURF is a robust local invariant feature descriptor and has been used in many applications such as object recognition. Even though this algorithm has similar matching accuracy compared to the SIFT, which is another popular feature extraction algorithm, it has advantage in matching time. However, these descriptors do not consider relative location information of extracted interesting points to guarantee rotation invariance. Also, since they use gray image of original color image, they do not use the color information of images, either. In this paper, we propose a method for improving matching performance of SURF descriptor using the color and relative location information of interest points. The location information is built from the angles between the line connecting the centers of interest points and the orientation line constructed for the center of each interest points. For the color information, color histogram is constructed for the region of each interest point. We show the performance of our scheme through experiments.

Content based Image Retrieval using RGB Maximum Frequency Indexing and BW Clustering (RGB 최대 주파수 인덱싱과 BW 클러스터링을 이용한 콘텐츠 기반 영상 검색)

  • Kang, Ji-Young;Beak, Jung-Uk;Kang, Gwang-Won;An, Young-Eun;Park, Jong-An
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.2
    • /
    • pp.71-79
    • /
    • 2008
  • This study proposed a content-based image retrieval system that uses RGB maximum frequency indexing and BW clustering in order to deal with existing retrieval errors using histogram. We split RGB from RGB color images, obtained histogram which was evenly split into 32 bins, calculated and analysed pixels of each area at histogram of R, G, B and obtained the maximum value. We indexed the color information obtained, obtained 100 similar images using the values, operated the final image retrieval system using the total number and distribution rate of clusters. The algorithm proposed in this study used space information using the features obtained from R, G, and B and clusters to obtain effective features, which overcame the disadvantage of existing gray-scale algorithm that perceived different images as same if they have the same frequencies of shade. As a result of measuring the performances using Recall and Precision, this study found that the retrieval rate and priority of the proposed algorithm are more outstanding than those of existing algorithm.

  • PDF

Video-based Intelligent Unmanned Fire Surveillance System (영상기반 지능형 무인 화재감시 시스템)

  • Jeon, Hyoung-Seok;Yeom, Dong-Hae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.516-521
    • /
    • 2010
  • In this paper, we propose a video-based intelligent unmanned fire surveillance system using fuzzy color models. In general, to detect heat or smoke, a separate device is required for a fire surveillance system, this system, however, can be implemented by using widely used CCTV, which does not need separate devices and extra cost. The systems called video-based fire surveillance systems use mainly a method extracting smoke or flame from an input image only. The smoke is difficult to extract at night because of its gray-scale color, and the flame color depends on the temperature, the inflammable, the size of flame, etc, which makes it hard to extract the flame region from the input image. This paper deals with a intelligent fire surveillance system which is robust against the variation of the flame color, especially at night. The proposed system extracts the moving object from the input image, makes a decision whether the object is the flame or not by means of the color obtained by fuzzy color model and the shape obtained by histogram, and issues a fire alarm when the flame is spread. Finally, we verify the efficiency of the proposed system through the experiment of the controlled real fire.

Recognition and Visualization of Crack on Concrete Wall using Deep Learning and Transfer Learning (딥러닝과 전이학습을 이용한 콘크리트 균열 인식 및 시각화)

  • Lee, Sang-Ik;Yang, Gyeong-Mo;Lee, Jemyung;Lee, Jong-Hyuk;Jeong, Yeong-Joon;Lee, Jun-Gu;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.55-65
    • /
    • 2019
  • Although crack on concrete exists from its early formation, crack requires attention as it affects stiffness of structure and can lead demolition of structure as it grows. Detecting cracks on concrete is needed to take action prior to performance degradation of structure, and deep learning can be utilized for it. In this study, transfer learning, one of the deep learning techniques, was used to detect the crack, as the amount of crack's image data was limited. Pre-trained Inception-v3 was applied as a base model for the transfer learning. Web scrapping was utilized to fetch images of concrete wall with or without crack from web. In the recognition of crack, image post-process including changing size or removing color were applied. In the visualization of crack, source images divided into 30px, 50px or 100px size were used as input data, and different numbers of input data per category were applied for each case. With the results of visualized crack image, false positive and false negative errors were examined. Highest accuracy for the recognizing crack was achieved when the source images were adjusted into 224px size under gray-scale. In visualization, the result using 50 data per category under 100px interval size showed the smallest error. With regard to the false positive error, the best result was obtained using 400 data per category, and regarding to the false negative error, the case using 50 data per category showed the best result.