• Title/Summary/Keyword: gray leaf spot

Search Result 36, Processing Time 0.029 seconds

Gray Leaf Spot of Tomato Caused by Stephylium solani

  • Kim, Byung-Soo;Cho, Hyun-Jung;Hwang, Hee-Suk;Cha, Yu-Sun
    • The Plant Pathology Journal
    • /
    • v.15 no.6
    • /
    • pp.348-350
    • /
    • 1999
  • Gray leaf spot of tomato was observed on tomato plants growing in a middle of a pepper field where pepper plants were badly infected with gray leaf spot. Both Stemphylium solani and S. lycopersici were isolated from the lesion. Both species were highly pathogenic on tomato and pepper. This is the first report in Korea of occurrence of gray leaf spot of tomato caused by Stemphylium solani Weber.

  • PDF

Induced of Systemic Resistance against Gray Leaf Spot in Pepper by Enterobacter Species Isolated from Family Gramineae Plants in Dok-do (독도의 벼과식물로부터 분리된 Enterobacter spp.에 의한 고추의 흰별무늬병에 대한 전신유도저항성)

  • Son, Jin-Soo;Sumayo, Marilyn;Kang, Hyun-Uk;Kim, Byung-Soo;Kwon, Duck-Kee;Ghim, Sa-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.2
    • /
    • pp.135-143
    • /
    • 2012
  • This study's aim is to isolate and characterize plant growth promoting Enterobacter species for the biological control of gray leaf spot in pepper. Screening was carried out from the rhizosphere of Agropyron tsukushiensi var. transiens (Hack.) Ohwi in Dok-do. Rhizobacterial isolates were partially identified by 16S rDNA sequencing and Enterobacter species were tested for plant growth promoting capabilities and the induction of systemic resistance in pepper against gray leaf spot caused by Stemphylium solani. Isolates were tested for production of indole-acetic acid and siderophore, and for phosphate solubilization. The application of isolates was effective in controlling gray leaf spot in pepper with E. asburiae (KNUC5007) and E. cancerogenes (KNUC5008 and KNUC5010) having the highest efficacy in reducing gray leaf spot severity. This is the first report of the biological control of gray leaf spot in pepper using rhizobacteria and it is hoped that this study will increase the utilization of Enterobacter species as plant growth promoters and biocontrol agents.

Resistance to Two Leaf Spot Diseases of Pepper Genetic Resources Introduced from Mexico and Nepal (멕시코와 네팔도입 고추 유전자원의 두 가지 점무늬병에 대한 저항성)

  • Jo, Eun-Hyeong;Kim, Jeong-Hoon;Jun, Su-Kyung;Lee, Ji-Seon;Kim, Byung-Soo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.23
    • /
    • pp.43-51
    • /
    • 2005
  • Pepper genetic resources consisting of introductions from Mexico and Nepal and susceptible and resistant controls were tested for resistance to gray leaf spot and to bacterial spot by serially inoculating the two disease pathogens, Stemphylium spp. first and Xanthomonas campestris pv. vesicatoria next, with application of fungicide after evaluation of resistance to gray leaf spot first. KC866, KC872, KC902, KC905 were resistant to gray leaf spot in addition to known resistance sources, KC43, KC47, KC220, KC319, KC320, KC380. KC897 was on the top of the resistance sources list, even better than KC177(163192), and was followed by KC889, KC896, KC898, all of which were introductions from Nepal.

  • PDF

Forecasting Leaf Mold and Gray Leaf Spot Incidence in Tomato and Fungicide Spray Scheduling (토마토 재배에서 점무늬병 및 잎곰팡이병 발생 예측 및 방제력 연구)

  • Lee, Mun Haeng
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.376-383
    • /
    • 2022
  • The current study, which consisted of two independent studies (laboratory and greenhouse), was carried out to project the hypothesis fungi-spray scheduling for leaf mold and gray leaf spot in tomato, as well as to evaluate the effect of temperature and leaf wet duration on the effectiveness of different fungicides against these diseases. In the first experiment, tomato leaves were infected with 1 × 104 conidia·mL-1 and put in a dew chamber for 0 to 18 hours at 10 to 25℃ (Fulvia fulva) and 10 to 30℃ (Stemphylium lycopersici). In farm study, tomato plants were treated for 240 hours with diluted (1,000 times) 30% trimidazole, 50% polyoxin B, and 40% iminoctadine tris (Belkut) for protection of leaf mold, and 10% etridiazole + 55% thiophanate-methyl (Gajiran), and 15% tribasic copper sulfate (Sebinna) for protection of gray leaf spot. In laboratory test, leaf condensation on the leaves of tomato plants were emerged after 9 hrs. of incubation. In conclusion, the incidence degree of leaf mold and gray leaf spot disease on tomato plants shows that it is very closely related to formation of leaf condensation, therefore the incidence of leaf mold was greater at 20 and 15℃, while 25 and 20℃ enhanced the incidence of gray leaf spot. The incidence of leaf mold and gray leaf spot developed 20 days after inoculation, and the latency period was estimated to be 14-15 days. Trihumin fungicide had the maximum effectiveness up to 168 hours of fungicides at 12 hours of wet duration in leaf mold, whereas Gajiran fungicide had the highest control (93%) against gray leaf spot up to 144 hours. All the chemicals showed an around 30-50% decrease in effectiveness after 240 hours of treatment. The model predictions in present study could be help in timely, effective and ecofriendly management of leaf mold disease in tomato.

Leaf Spot of safflower (Carthamus thinctorius) caused by Alternaria carthami and A. alternata (Alternaria carthami와 A. alternata에 의한 잇꽃 잎점무늬병)

  • Park, Kyeng-Seuk;Lee, Soon-Gu
    • Research in Plant Disease
    • /
    • v.9 no.3
    • /
    • pp.159-161
    • /
    • 2003
  • Leaf spot diseases were found on safflower (Carthamus thinctorius) leaf in several fields located in Euisong-Gun, Gyengbuk province in Korea. The infected leaf rate of the diseases in surveyed area were different each years from 2001 to 2003 such as about 5%, 10%, and 30%, repectively. The typicla symptoms of diseases appeared first as small, light brown spots on leaves. And then spot turn dark brown and magnified. And yellow decoloration zone appeared surrounding dark brown spots. Mycological characteristics of Alternaria carthami, isolated from safflower mature leaf spot were dark gray colonies, conidiophores simple erect, septated, 40~80 ${\mu}m$ length; conidia solitary, straight, body size fo without beak length 40~100${\mu}m$, 10~15${\mu}m$ thick, Number of transverse septa 4~10 and longitudinal septa 4~7 ; beak with 2~4 septa, 30~65${\mu}m$ length. And A. alternata, isolated from old leaf were gray~dark gray colonies, conidiophores simple or branched, 20~110 ${\mu}m$ length; conidia long chaines, short conical or cylindrical beak, 2~6 transverse septa and several longitudinal septa, body size of without beak length 30~60 ${\mu}m$, 10~20 ${\mu}m$ thick ; beak length 5~35 ${\mu}m$. These are the first report on the leaf spot of safflower caused by Alternaria carthami, A alternata in Korea.

Leaf Spot of Cotton Rose Caused by Corynespora cassiicola in Korea

  • Kwon, Jin-Hyeuk;Park, Chang-Seuk
    • Mycobiology
    • /
    • v.31 no.1
    • /
    • pp.57-59
    • /
    • 2003
  • A leaf spot of cotton rose(Hibiscus mutabilis) occurred severely in the flower beds of cotton rose around Uiryeong-gun, Gyeongnam Province in Korea. The causal fungus was identified as Corynespora cassiicola on the basis of cultural and morphological characteristics of the fungus. The fungus grew well on potato dextrose agar and the colony color was gray to brown. Conidia were solitary or catenate, obclavate to cylindrical in shape, and pale olivaceous brown or brown in color. They had 420 pseudosepta, and measured $35.2{\sim}173.6{\times}8.8{\sim}19.9{\mu}m$. Conidia germinated as a bipolar type. Conidiophores were pale to mid brown in color, and measured $74.2{\sim}275.6{\times}3.8{\sim}10.8{\mu}m$. Optimal temperature for mycelial growth was $30^{\circ}C$. The fungal isolate grown on PDA showed strong pathogenicity to cotton rose plant. This is the first report on the corynespora leaf spot of cotton rose(Hibiscus mutabilis) caused by Corynespora cassiicola in Korea.

CMS-Rf Genotype of Resistance Sources to Gray Leaf Spot in Pepper (Capsicum annuum L.)

  • Kim, Byung-Soo;Kim, Min-Jeong;Lee, Ji-Seon;Kim, Jeong-Hoon;Jun, Su-Kyung
    • The Plant Pathology Journal
    • /
    • v.22 no.2
    • /
    • pp.115-118
    • /
    • 2006
  • A total of 19 selections derived from 4 sources of peppers with resistance to gray leaf spot (KC43, KC47, KC220, and KC319) were tested for their nuclear genotype of the gene conferring the ability to restore the cytoplasmic male sterility. All the selections derived from KC220 and KC319 were maintainers with a genotype of Nrfrf, while all the selections from KC43 and KC47were restorers with a genotype of N(S)RfRf.

Regulation of Pathogenesis by Light in Cercospora zeae-maydis: An Updated Perspective

  • Kim, Hun;Ridenour, John B.;Dunkle, Larry D.;Bluhm, Burton H.
    • The Plant Pathology Journal
    • /
    • v.27 no.2
    • /
    • pp.103-109
    • /
    • 2011
  • The fungal genus Cercospora is one of the most ubiquitous groups of plant pathogenic fungi, and gray leaf spot caused by C. zeae-maydis is one of the most widespread and damaging foliar diseases of maize in the world. While light has been implicated as a critical environmental regulator of pathogenesis in C. zeae-maydis, the relationship between light and the development of disease is not fully understood. Recent discoveries have provided new insights into how light influences pathogenesis and morphogenesis in C. zeae-maydis, particularly at the molecular level. This review is focused on integrating old and new information to provide an updated perspective of how light influences pathogenesis, and provides a working model to explain some of the underlying molecular mechanisms. Ultimately, a thorough molecular-level understanding of how light regulates pathogenesis will augment efforts to manage gray leaf spot by improving host resistance and disease management strategies.

Surveys on Disease Occurrence in Major Horticultural Crops in Kangwon Alpine Areas (강원도 고랭지 주요 원예작물의 병해 발생 상황)

  • Hahm, Young-Il;Kwon, Min;Kim, Jeom-Soon;Seo, Hyo-Won;Ahn, Jae-Hoon
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.668-675
    • /
    • 1998
  • These surveys were conducted to check the occurrence of disease in various horticultural crops in alpine areas, especially Daekwallyong areas, Pyongchang-Gun, and Hyeongseong-Gun in Kangwon province. TuMV on Chinese cabbage was one of the most serious diseases, especially in 1994 and 1997. The incidence of soft rot and clubroot has been increased gradually. Brittle root rot on Chinese cabbage was significantly decreased. Soft rot, gray mold, downy mildew, powdery mildew, bottom rot and Alternaria leaf spot were the common diseases on most vegetable crops. Gray mold (Botrytis cinerea) on celery, cercospora leaf spot (Cercospora sp.) on melon, powdery mildew (Erysiphe cichoracearum) on lettuce, and clubroot (Plasmodiophora brassicae) on parsley are newly found in Korea. The most common and predominant diseases were viruses, especially CMV, TMV, TuMV, BBMV, and gray mold, wilts, and cercospora leaf spot on many flowers in alpine areas. Fusarium oxysporum f. sp. eustomae causing wilting on lisianthus (Eustoma grandiflorum), Turnip mosaic virus causing mosaic and color breaking on stock, Cercospora spp. causing cercospora leaf spot on various wild lily, Cladosporum echinulatum causing leaf spot on carnation, and phytoplasma causing witches' broom on statice (Limonium sinuatum) and blazing star (Liatris spp.) were newly found during these surveys in Korea.

  • PDF

QTL Mapping of Resistance to Gray Leaf Spot in Ryegrass: Consistency of QTL between Two Mapping Populations

  • Curley, J.;Chakraborty, N.;Chang, S.;Jung, G.
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.1
    • /
    • pp.85-100
    • /
    • 2008
  • Gray leaf spot (GLS) is a serious fungal disease caused by Pyricularia oryzae Cavara, recently reported on the important turf and forage species, perennial ryegrass (Lolium perenneL.). This fungus also causes rice blast, which is usually controlled by host resistance, but durability of resistance is a problem. Few instances of GLS resistance have been reported in perennial ryegrass. However, two major QTL for GLS resistance have been detected on linkage groups 3 and 6 in an Italian x perennial ryegrass mapping population. To confirm that those QTL are still detectable in the next generation and can function in a different genetic background, a resistant segregant from this population has been crossed with an unrelated susceptible perennial clone, to form a new mapping population segregating for GLS resistance. QTL analysis has been performed in the new population, using two different ryegrass field isolates and RAPD, RFLP, and SSR marker-based linkage maps for each parent. Results indicate the previously identified QTL on linkage group 3 is still significant in the new population, with LOD and percent of phenotypic variance explained ranging from 2.0 to 3.5 and 5% to 10%, respectively. Also two QTL were detected in the susceptible parent, with similar LOD and phenotypic variance explained. Although the linkage group 6 QTL was not detected, the major QTL on linkage group 3 appears to beconfirmed. These results will add to our understanding of the genetic architecture of GLS resistance in ryegrass, which will facilitate its use in perennial ryegrass breeding programs.