• Title/Summary/Keyword: gravity wall

Search Result 185, Processing Time 0.026 seconds

Estimation on Filling Performance of Thixotropic Grout for Increasing Front-Water Depth of Gravity-Type Quay Wall (중력식 안벽 구조물의 증심 시공을 위한 가소성 그라우트의 충진성능 평가)

  • Jang, Kyong-Pil;Ryu, Yong-Sun;Kwon, Seung-Hee;Han, Woon-Woo;Oh, Myong-Hak
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.169-177
    • /
    • 2017
  • Recently, as the size of transportation vessels has increased, there is a growing need for securing the front-water depths of existing port facilities. The method of deepening front-water depth is securing the depth of the port facility, and it is reinforced by grouting after excavating the rubble-mound to the required depth. The purpose of this study is to investigate the reinforcing performance and filling performance of thixotropic grout as a grouting material for reinforcing rubble-mound. Compressive strength tests were carried out for two types of thixotropic grout, and 5 specimens with a diameter of 400 mm and a height of 530 mm were manufactured and evaluated for filling performance. The required strength of reinforced rubble-mound required to ensure the safety of the structure is 6 MPa. All the thixotropic grouts used in this study were found to satisfy the required strength over 9 MPa at 7 days of age. As a result of visual observation of filling state of the filling performance test specimens, it was confirmed that the thixotropic grout was well filled up to the desired fillet height.

Preparation Technique of Foam-Floater to Level Gauge of LPG Tank with High Pressure (LPG 고압탱크 레벨 게이지(Level Gauge)용 발포부표 제조 기술)

  • Kim, Byoung-Sik;Hong, Joo-Hee;Chung, Yongjae;Heo, Kwang-Beom
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.361-368
    • /
    • 2006
  • The purpose of this study is to invent the preparation technique of the foam-floater used as a level gauge of liquefied petroleum gas (LPG) tank under high pressure, which has not only closed pores but also has under 5 wt% changingrate in case of depositing 72 h in room-temperature LPG. In pressure-resistance and deposition experiment, the prepared foam-floaters with different sulfur (325 Mesh and 400 Mesh) and foaming agent (dinitrosopentamethylenetetramin; DPT and azodicarbonamide; AC) had a marginal difference in its weight changing-rate. However, the prepared floater with sulfur 400 Mesh and the foaming agent AC had smaller pores and higher closed pore-rate. Under $50kg_f/cm^3$ hydraulic pressure, the floater with medium thermal (MT) carbon showed a lower weight changing-rate than semi reinforcing furnace (SRF) carbon. Providing a post-treatment to the prepared floater, the hardness and the pressure-resistance of the inner pore-wall of floater were increased. Prepared floaters having a specific gravity below 0.30 were distorted and broken, and other floaters with a specific gravity above 0.35 were not useful as a floater because of the low buoyancy. Therefore, it was considered that the floaters with a specific gravity between 0.3~0.35 are the most useful as a floater under $50kg_f/cm^3$ pressure-resistance.

Effects of Corrugated GFRP Shear Connector Width and Pitch on In-plane Shear Behavior of Insulated Concrete Sandwich Wall Panels (CSWP) (파형 GFRP 전단연결재의 폭 및 너비에 따른 중단열 벽체의 면내전단거동)

  • Jang, Seok-Joon;Oh, Tae-Sik;You, Young-Chan;Kim, Ho-Royng;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.421-428
    • /
    • 2014
  • This paper describes the experimental results of insulated concrete sandwich wall panels (CSWP) with corrugated glass fiber-reinforced polymer (GFRP) shear connectors under in-plane shear loading. Corrugated GFRP shear connectors were used to improve the thermal property of insulated CSWP and to achieve composite action between the interior and exterior concrete wall panels. Test specimens were consist of three concrete panels with two insulation layers between concrete panels and middle concrete panels was loaded in the direction of gravity. To evaluate the effects of insulation types (extruded polystyrene, XPSS and expanded polystyrene, EPS), shear connector pitch (300 and 400 mm) and width (10 and 15 mm) on in-plane shear behavior of insulted CSWP, failure mode and shear flow-average relative slip relationship of specimens were investigated. Test results indicate that the bond stress between concrete panel and insulation is considerable initially. Especially in case of insulated CSWP without shear connector, initial stiffness of CSWP with XPSS is superior to that of CSWP with EPS. The shear connector's contribution to in-plane shear performance of insulated CSWP depends on the type of insulation.

Shear Resistance of Light-gauge Steel Stud Wall infilled with light-weight foamed mortar (경량기포모르터와 합성한 경량형강 벽체의 전단 저항)

  • Lee, Sang Sup;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.397-406
    • /
    • 2004
  • This paper presents the test and evaluation results on the shear strength and stiffness of a light steel stud wall from a lightweight foamed mortar (lightweight hybrid wall). The use of a lightweight foamed mortar was aimed at improving structural performance, thermal performance, and finish. Studiesshowed that it did not affect thermal performance, but it contributed to structural performance and finish when the unit weight was more than 0.8 (Editor's note: Please indicate the unit of measurement.). In this study, 14 specimens-whose parameters included the specific gravity of the lightweight foamed mortar (0.6, 0.8, 1.0, 1.2), the spacing of the stud (450 mm, 600 mm, or 900 mm), finishing materials (such as lightweight foamed mortar, OSB, and gypsum board), and bracing-were manufactured. Three typical, steel house-framing specimens were added to compare the test results with the 14 specimens. The results of in-plane shear tests show that the use of lightweight foamed mortar (1.15~5.38 times stronger, 1.45~13.7 times stiffer) results in ultimate strength and initial stiffness. In addition, it was possible to widen the stud spacing to up to 900 mm without decreasing shear strength. It was very important to prevent the lightweight foamed mortar from shrinking and to secure the adhesion between the steel stud and the lightweight foamed mortar to improve structural performance.

Evaluation of an Effective Load Transfer System Applied to a Simple Model of a Wall Frame Structural System (단순 모델을 사용한 추상복합 건물의 효율적인 전이 시스템에 관한 연구)

  • 정영일;윤석한;홍원기;김희철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.23-29
    • /
    • 2002
  • A wall-frame type structural system has been widely used to make full use of a limited land in large cities to satisfy the several functional requirement in one building. However, this type of hybrid structure brought some problems due to the vertical discontinuity of a structural system. The response of a wall-frame type structural system having a deep transfer girder was observed. An arch system was introduced to replace the deep transfer girder. The adequacy of an arch system was observed for the various boundary conditions of a system. The proposed system was compared to a general transfer girder system by applying both gravity load and lateral load. It was observed that an arch system fairly distributes the stress without concentrating stress at a certain location of a system differently from the current transfer girder system. The moment decrement effect of a column can also be obtained by eliminating the large mass of a transfer girder. Also it was investigated that an arch system is more economical and effective than the current transfer girder system.

Lateral Earth Pressure against Gravity Walls Backfilled by $C-\phi$ Soil ($C-\phi$ 흙으로 뒤채움한 중력식 옹벽에 작용하는 정적토압)

  • Jeong, Seong-Gyo;Heo, Dae-Yeong;Lee, Man-Ryeol
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.47-60
    • /
    • 1996
  • Of the classical theories on lateral earth pressure, the Coulomb's and the Rankine's theories, which have been usually used in practice for design of retaining walls, assumed that the lateral earth pressure was a triangular distribution. However, the experimental results obtained by Terzaghi(1934), Tsagreli(1967), Fang & Ishibashi(1986), etc showed that lateral pressure were not triangular distribution. ' In this study, for rigid walls with inclined backfaces and inclined surfaces backfilled by $C-\phi$ soils, an analytical method of earth pressure distribution has been newly suggested by using the concept of the flat arch. The results calculated by the newly suggested equations were compared with ones by the existed theories. And'the influence factors of the earth pressures by the suggested equations were investigated. As a result, the thrusts obtained by this method agree well with those by the existing theories, except the Rankine's solution. It was showed that the height to the centre of pressure(h) depends mainly upon the inclinations of the backface and the backfilled surface, the angle of internal friction, and the adhesion between the wall and the backfilled soil, instead of 0.33H, where H is the wall height.

  • PDF

Evaluation of Performance of Korean Existing School Buildings with Masonry Infilled Walls Against Earthquakes (조적조 비내력벽을 가진 기존 학교 구조물의 내진 성능평가)

  • Moon, Ki Hoon;Jeon, Yong Ryul;Lee, Chang Seok;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.37-46
    • /
    • 2012
  • In Korea, most existing school buildings have been constructed with moment frames with un-reinforced infill walls designed only considering gravity loads. Thus, the buildings may not perform satisfactorily during earthquakes expected in Korea. In exterior frames of the building, un-reinforced masonry infill walls with window openings are commonly placed, which may alter the structural behavior of adjacent columns due to the interaction between the wall and column. The objective of this study is to evaluate the seismic performance of existing school buildings according to the procedure specified in ATC 63. Analytical models are proposed to simulate the structural behavior of columns, infill walls and their interaction. The accuracy of the proposed model is verified by comparing the analytical results with the experimental test results for one bay frames with and without infill walls with openings. For seismic performance evaluation, three story buildings are considered as model frames located at sites having different soil conditions ($S_A$, $S_B$, $S_C$, $S_D$, $S_E$) in Korea. It is observed that columns behaves as a short columns governed by shear due to infill masonry walls with openings. The collapse probabilities of the frames under maximum considered earthquake ranges from 62.9 to 99.5 %, which far exceed the allowable value specified in ATC 63.

Verification of Similitude Law for 1g Shaking Table Tests through Modeling of Models (모형의 모형화 기법을 이용한 1g 진동대 실험을 위한 상사법칙의 유효성 검증)

  • Hwang Jae-Ik;Kim Sung-Ryul;Jang In-Sung;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.91-103
    • /
    • 2004
  • A series of shaking table model tests were performed to verify the validity of similitude law, which is suggested by lai (1989) to simulate the dynamic behavior of soil-fluid-structure system for is shaking table tests. In the tests, the similitude law suggested by lai was applied to determine the length and the time scaling factors. Also, the steady state concept was used in determining the density of model backfill soil, which is a key factor in simulating the development of excess pore pressure during shaking. The similitude law was verified by checking whether three different sizes of quay walls show the identical behavior or not. The similar responses of acceleration, excess pore pressure and horizontal displacement of walls were obtained far the small and large models. However, the medium model showed larger responses than those of the small and large models because of the resonance between the frequency of input acceleration and the natural frequency of the wall system. In addition, the vertical displacement and rotational angle of the walls became larger with the increase of model size.

A Study on the Bahavior and Failure Mechanism of Soil Nailing Walls using Centrifuge Model Tests (원심모형실험을 이용한 소일네일링 벽체의 거동 및 파괴메카니즘에 관한 연구)

  • Kim, Young-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5963-5973
    • /
    • 2011
  • Current design and analyzing methods about soil nailing structures, developed on the basis of results obtained from experiments in laboratory or in field and numerical analyses, have applied different interaction mechanisms between the reinforced nails and the surrounding ground, and different safety factors against failure have been obtained. They might be proper approaches if the assumptions about rigidity of nails and ground conditions are met with actual conditions occurred in field. Otherwise, they would result in designing on analyzing in inappropriate ways so that it is needed to evaluate the validity of them. Therefore, in this research using the Centrifugal Model Testing, numerical parameters experiments about soil nailing structures' behavior and failure mechanism were performed. In the numerical parameters experiments, transmuted nail's length, setting angle, nail's front panel, stiffness variously, and increased the level of gravity until wall model was destroyed. Based on experimental results, we compared the effect, failure mechanism caused from parameters changes. By reviewing and comparing centrifugal model test results and methods currently in use, verified validity of existing methods.

An Experimental Study for the Evaluations of Compressive Performance of Light-Weight Hybrid Wall Panel (경량합성 패널의 압축성능 평가에 관한 실험적 연구)

  • Lee, Sang Sup;Park, Keum Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.455-462
    • /
    • 2007
  • The purpose of this paper is to evaluate experimentally the compressive performance of horizontal joints for light-weight hybrid panel in-filled with light-weight foamed mortar. The parameters include the presence of light-weight foamed mortar, the specific gravity of light-weight foamed mortar (0.8, 1.2), the finishing materials (light-weight foamed mortar, Oriented Strand Board [OSB], gypsum board), and the fixed shape of the hybrid panel. As the improved details for fixed end, the peak strength and the stiffness of the light-weight hybrid panel are enhanced as follows: 1.07-2.7 times in peak load, 15-24 times in initial stiffness. The peak strength of the light-weight hybrid panel obtained by the test result is in agreement with the calculations, which is the criterion value according to the domestic code.