• Title/Summary/Keyword: gravity or magnetic field

Search Result 11, Processing Time 0.022 seconds

Upward Continuation of Potential Field on Spherical Patch Area (구면부분지역에서의 퍼텐셜마당의 상향연속)

  • Na, Sung-Ho;Chung, Tae Woong;Shin, Young Hong
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.4
    • /
    • pp.245-248
    • /
    • 2012
  • Two dimensional Fourier transform can be used for the upward continuation of gravity or magnetic field data acquired at given altitude over a rectangular area. Earth's curvature is often neglected in most potential field continuations, however, it should be considered over several hundred kilometer field area. In this study, we developed a new method retaining terms of Earth's curvature to better perform the continuation of potential field on spherical patch area.

Geologic Structure of Euiseong Sub-basin from Spectrally Correlated Geopotential Field Anomalies (포텐셜필드의 스텍트럼대비법을 이용한 의성소분지의 지구조 연구)

  • 김원균
    • Economic and Environmental Geology
    • /
    • v.33 no.3
    • /
    • pp.217-228
    • /
    • 2000
  • We use spectral correlation method to analyze gravity and magnetic anomalies of Euiseong Sub-basin for distribution of rock facies and gelogic structures. The analysis reveals distinct polarity between gravity and magnetic anomaly correlation ; intermediate to mafic intrusives, extrusives, and the Tertiary basin shows positive gravity (+G) and positive magnetic (+M) correlation. Granitic gneiss and felsic volcanics negative gravity 9-G) and negative magnetic (-M) correlation. The Palgongsan granite, felsic to mafic extrusives and Mesozoic granites are characterized by -G and + M correlation. +G and -M correlations in the sedimentary formations are interpreted by uplift of pre-Cretaceous basement rocks . The + G and + M correlation characteristics in northeastern part of Euiseong Sub-basin including the Tertiary sedimentary basin result from the uplift of crustal materials. Major axes of spectrally correlated amomalies have mostly NW-SE or NE-SW directions. The former is due to the intrusives along strike-slip faults, and the latter which is observed in sedimentary formations is related to geological structures of basement associated new insight into the boundary between Euiseong and Milyang Sub-basin.

  • PDF

The 3-Axis Attitude Stabilization System Design of Picosat Hausat-1 (극소형 위성 HAUSAT-1의 3축 자세 안정화 시스템 설계)

  • Seo,Seung-Won;Jeong,Nam-Suk;Jang,Yeong-Geun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.100-111
    • /
    • 2003
  • The HAUSAT-1(Hankuk Aviation University SATellite-1) will orbit at the altitude of 650km-800 km with 65 or 98 degree inclination angle. The effects of magnetic field and Earth gravity are more predominant than other space disturbances because the HAUSAT-1 will be positioned in LEO(Low Earth Orbit). The HAUSAT-1 design implements a magnetic control system and gravity-stable system which implement the solar panel deployment system. The simulation using MATLAB was performed to make sure the attitude stability of HAUSAT-1, which is based on the 8th order magnetic field model and non-linear equations of disturbances and the HAUSAT-1 attitude. The stability is investigated for two different HAUSAT-1 configurations and attitude which are affected by disturbances through simulation. The results for gravity-gradient stable and non gravity-gradient stable system are compared. Methodology of attitude stabilization was explored to develop an effective attitude control system for the HAUSAT-1 using magnetic torquers.

Tectonic Link between NE China and Korean Peninsula, Revealed by Interpreting CHAMP Satellite Magnetic and GRACE Satellite Gravity Data

  • Choi, Sungchan;Oh, Chang-Whan;Luehr, Herrmann
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.209-217
    • /
    • 2006
  • The major continental blocks in NE-Asia are the North China Block and the South China Blo, which have collided, starting from the Korean peninsula. The suture zone in NE China between two blocks is well defined from the QinIing-Dabie-Orogenic Belt to the Jiaodong (Sulu) Belt by the geological and geophysical interpretation. The discovery of high pressure metamorphic rocks in the Hongsung area of the Korean peninsula can be used to estimate the suture zone. This indicates that the suture zone in the Jiaodong Belt might be extended to Hongsung area. However, due to the lack of geological and geophysical data over the Yellow sea, the extension of the suture zone to the Korean peninsula across the Yellow Sea is obscure. To find out the tectonic relationship between NE China and the Korean peninsula it is necessary to complete U-ie homogeneous geophysical dataset of NE Asia, which can be provided by satellite observations. The CHAMP lithospheric magnetic field (MF3) and CHAMP-GRACE gravity field, combined with surface measured data, allow a much more accurate in-ference of tectonic structures than previously available. The CHAMP magnetic anomaly map reveals significant magnetic lows in the Yellow Sea near Nanjing and Hongsung, where are characterized by gravity highs on U-ie CHAMP-GRACE gravity anomaly map. To evaluate the depth and location of poten-tial field anomaly causative bodies, the Euler Deconvolution method is implemented. After comparing the two potential field solutions with the simplified geological map containing tectonic lines and the distribution of earthquakes epicenters, it is found that the derived structure boundaries of both are well coincident with the seismic activities as well as with the tectonic lineaments. The interpretation of the CHAMP satellite magnetic and GRACE satellite gravity datasets reveal two tectonic boundaries in U-ie Yellow Sea and the Korean peninsula, indicating U-ie norttiern and southern margins of the suture zone between the North China Block and the South China Block. The former is extended from the Jiaodong Belt in East China to the Imjingang Belt on the Korean peninsula, the later from Nanjing, East China, to Hongsung, the Korean peninsula. The tectonic movement in or near the suture zone might be responsible for the seismic activities in the western region of the Korean Peninsula and the development of the Yellow Sea sedimentary basin.

  • PDF

Magnetic separation device for paramagnetic materials operated in a low magnetic field

  • Mishima, F.;Nomura, N.;Nishijima, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.19-23
    • /
    • 2022
  • We have been developing a magnetic separation device that can be used in low magnetic fields for paramagnetic materials. Magnetic separation of paramagnetic particles with a small particle size is desired for volume reduction of contaminated soil in Fukushima or separation of iron scale from water supply system in power plants. However, the implementation of the system has been difficult due to the needed magnetic fields is high for paramagnetic materials. This is because there was a problem in installing such a magnet in the site. Therefore, we have developed a magnetic separation system that combines a selection tube and magnetic separation that can separate small sized paramagnetic particles in a low magnetic field. The selection tube is a technique for classifying the suspended particles by utilizing the phenomenon that the suspended particles come to rest when the gravity acting on the particles and the drag force are balanced when the suspension is flowed upward. In the balanced condition, they can be captured with even small magnetic forces. In this study, we calculated the particle size of paramagnetic particles trapped in a selection tube in a high gradient magnetic field. As a result, the combination of the selection tube and HGMS (High Gradient Magnetic Separation-system) can separate small sized paramagnetic particles under low magnetic field with high efficiency, and this paper shows its potential application.

Characteristics of Heat Transfer of Natural Convection for Magnetic Fluids in Annular Pipes (이중원관내 자성유체의 자연대류에 대한 전열특성)

  • Park, J.W.;Jun, C.H.;Seo, L.S.;Ryu, S.O.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.2
    • /
    • pp.73-79
    • /
    • 2002
  • Compared with Newtonial fluids, magnetic fluids have effects on magnetic force. In this study, the purpose is to research the heat transfer characteristic of magnetic fluids which have metalic and fluid characteristics as the external pipe is being cooled and internal pipe is heated. This study found the experimental results from the study of the variety of natural convection for magnetic fluids and the characteristics of the heat transfer by using numerical analysis according to the strength and direction of the magnetic fields from being imposed from the outside. Natural convection of magnetic fluids was controlled by the impressed magnetic fields, and the result of mean nusselt number was calculated. If the impressed magnetic field is in the direction of gravity or the strength of impressed magnetic field is more than -14 mT in the opposite direction, the heat transfer is more than that without the impressed magnetic field. If the strength of impressed magnetic field is less than -14 mT in the opposite direction, it is smaller than that without the impressed magnetic field. Especially, when the strength of the magnetic field is -14 mT, the heat transfer was at the minimum.

Guideline for the Design of Wall-Climbing Mobile Robot Using Permanent Magnetic Wheels (영구 자석 바퀴를 이용한 벽면 이동 로봇의 설계시의 설계지침)

  • 이화조;김은찬;한승철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.548-553
    • /
    • 2002
  • Most tasks of the large vertical or ceiling structures have been carried out by human power. Those tasks require us much operation costs and times, safety devices, etc. So the need of automation for those tasks have been rising. That automation needs a wall-climbing mobile vehicle. Most former researches are things about attachment devices and moving mechanisms. A wall-climbing mobile vehicle must be designed by a method different from the case of the vehicle of the horizontal environment. That is because gravity acts as a negative role on the stability of a wall-climbing vehicle. In this thesis, the particular shape characteristics of a wall-climbing mobile vehicle are derived by the wall-environment modeling. In addition, some design constraints of the permanent magnetic wheel as an attachment device was studied. According to those requirements and constraints, one specific wall-climbing mobile vehicle was designed and some experiments were made on the attachment ability of that vehicle.

  • PDF

New Approach in Magnetic Potential Field Continuation by FFT (FFT를 이용한 자력 포텐셜필드 자료의 수직방향의 연속에 대한 새로운 접근방법)

  • Kim, Hyung-Rae;Hwang, Jong-Sun;Suh, Man-Cheol;Kim, Jeong-Woo
    • Economic and Environmental Geology
    • /
    • v.43 no.3
    • /
    • pp.249-258
    • /
    • 2010
  • In general, a crustal geomagnetic (or gravity) anomaly compiled at one altitude can be estimated at a different altitude by continuation using the Fourier transform (FT). However, in case of continuation with a great distance between the two elevations, or, in particular, in case of downward continuation, the estimated anomalies by the FT are likely to be mathematically unstable so that the estimated values are not realistic. To solve this problem, two independently measured magnetic field anomalies at different altitudes, such as aeromagnetic and satellite magnetic observations, are implemented to estimate values at in-between altitude for better understanding and interpreting geophysical and geological features. This ‘'dual continuation’' technique is straightforward in the FT and gives a more realistic estimate in all altitudes when we simulated with a set of prismatic bodies at different altitudes. This implies that we add up another constraint like satellite-based observations on the geopotential field modeling for the non-unique geological and geophysical problems to a conventional Fourier-type continuation technique with a single set of observations.

Study on the Design Constraints of the Wall-Climbing Mobile Robot Using Permanent Magnetic Wheels (Part 1 - Design Guideline) (영구 자석 바퀴를 이용한 벽면 이동 로봇의 설계시의 제약 사항들에 대한 연구 (Part 1 - 설계지침))

  • 한승철;이화조;김은찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.69-76
    • /
    • 2004
  • Most tasks of the large vertical or ceiling structures have been carried out by human power. Those tasks require us much operation costs and times, safety devices, etc. So the need of automation for those tasks have been rising. That automation needs a wall-climbing mobile vehicle. Most former researches are things about attachment devices and moving mechanisms. A wall-climbing mobile vehicle must be designed by a method different from the case of the vehicle of the horizontal environment. That is because gravity acts as a negative role on the stability of a wall-climbing vehicle. In this thesis, the particular shape characteristics of a wall-climbing mobile vehicle are derived by the wall-environment modeling. In addition, some design constraints of the permanent magnetic wheel as an attachment device was studied. According to those requirements and constraints, one specific wall-climbing mobile vehicle was designed and some experiments were made on the attachment ability of that vehicle.

Separation-sounding Filter for Potential Data (퍼텐셜 자료의 깊이 분리)

  • Park, Yeong-Sue;Lim, Mu-Taek;Rim, Hyoung-Rae
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.2
    • /
    • pp.51-56
    • /
    • 2012
  • One of the most critical and essential procedures in the interpretation of gravity and magnetic data is to separate the anomaly due to the specific geologic structure from the summation of effects from a broad variety of geologic sources, especially those of different depths. Separation of the residual anomaly from the regional field is the most simple case of the vertical separation. If the anomaly due to a layer of specific depth can be separated or the depth of the separated layer can be quantitatively determined, it may deserve the separation-sounding. We suggest a wavelength filter whose cutoff frequency is determined by log-power spectrum analysis, as a separation-sounding filter. We applied this filter both to synthetic and real gravity data acquired at Heunghae area, and compared the results with those of Jacobsen's upward continuation filter. These showed that the proposed separation-sounding filter could be a useful tool for interpretation of the vertical geologic structure by stripping the gravity effects of geologic sources down to the desired depth.