• Title/Summary/Keyword: gravity modeling

Search Result 191, Processing Time 0.03 seconds

Data Pattern Estimation with Movement of the Center of Gravity

  • Ahn Tae-Chon;Jang Kyung-Won;Shin Dong-Du;Kang Hak-Soo;Yoon Yang-Woong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.210-216
    • /
    • 2006
  • In the rule based modeling, data partitioning plays crucial role be cause partitioned sub data set implies particular information of the given data set or system. In this paper, we present an empirical study result of the data pattern estimation to find underlying data patterns of the given data. Presented method performs crisp type clustering with given n number of data samples by means of the sequential agglomerative hierarchical nested model (SAHN). In each sequence, the average value of the sum of all inter-distance between centroid and data point. In the sequel, compute the derivation of the weighted average distance to observe a pattern distribution. For the final step, after overall clustering process is completed, weighted average distance value is applied to estimate range of the number of clusters in given dataset. The proposed estimation method and its result are considered with the use of FCM demo data set in MATLAB fuzzy logic toolbox and Box and Jenkins's gas furnace data.

Novel aspects of elastic flapping wing: Analytical solution for inertial forcing

  • Zare, Hadi;Pourtakdoust, Seid H.;Bighashdel, Ariyan
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.335-348
    • /
    • 2018
  • The structural dynamics (SD) behavior of Elastic Flapping Wings (EFWs) is investigated analytically as a novel approach in EFWs analysis. In this regard an analytical SD solution of EFW undergoing a prescribed rigid body motion is initially derived, where the governing equations are expressed in modal space. The inertial forces are also analytically computed utilizing the actuator induced acceleration effects on the wing structure, while due to importance of analytical solution the linearity assumption is also considered. The formulated initial-value problem is solved analytically to study the EFW structural responses, where the effect of structure-actuator frequency ratio, structure-flapping frequency ratio as well as the structure damping ratio on the EFW pick amplitude is analyzed. A case study is also simulated in which the wing is modeled as an elastic beam with shell elements undergoing a prescribed sinusoidal motion. The corresponding EFW transient and steady response in on-off servo behavior is investigated. This study provides a conceptual understanding for the overall EFW SD behavior in the presence of inertial forces plus the servo dynamics effects. In addition to the substantial analytical results, the study paves a new mathematical way to better understanding the complex role of SD in dynamic EFWs behavior. Specifically, similar mathematical formulations can be carried out to investigate the effect of aerodynamics and/or gravity.

A Multiphase Flow Modeling of Gravity Currents in a Rectangular Channel (사각형 수로에서 중력류의 다상흐름 수치모델링)

  • Paik, Joongcheol;Kim, Byung Joo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.98-98
    • /
    • 2019
  • 중력류 또는 밀도류는 주변 유체에 비해 상대적으로 밀도가 큰 유체가 밀도차에 의한 추진력으로 흐르는 것이다. 중력류의 수치모델링에는 두 가지 어려움이 있다. 즉, 적합한 지배방정식을 구성하여 적용하는 것 그리고 난류의 영향을 합리적으로 반영하는 것이다. 기존 중력류 해석을 위한 지배방정식들은 유체의 연속방정식과 운동량 방정식 그리고 밀도 또는 농도의 이송방정식을 조합하여 구성된다. 이들 지배방정식을 이용한 연구들은 대부분 두 유체 사이의 밀도차가 충분히 작아서 밀도 변동(variations)의 영향은 오로지 부력항에서만 유지된다는 Boussinesq 근사에 근거를 둔다. 그리고 이송방정식에서 밀도 또는 농도의 확산계수을 점성계수의 함수로 표현하기 위해서 Schmidt 수를 이용한다. 수치모델링에서 Schimdt 수는 상수값을 적용하지만, 이 값은 밀도의 연직방향 경사에 근거한 부력빈도(buoyancy frequency)와 난류량의 따라 큰 차이를 보이는 것으로 알려져있다. 한편, 표준 통계학적 난류모델과 벽함수를 적용한 수치모델링은 초기 중력에 의해서 무너지는(slumping) 단계를 넘어 관성력으로 추진되는 단계와 점성 효과가 지배적인 단계에서는 정확도에 현저히 낮아지기 때문에 대부분 큰와모의(large-eddy simulation, LES) 또는 DNS(direct numerical simulation)수준의 고해상도(high-resolution) 해석기법을 적용하여 공학적인 문제에 적용하는 데는 한계가 있다. 이 연구에서는 Boussinesq 근사와 Schmidt 수를 사용하지 않으며, LES 보다 적용이 용이한 DES (detached-eddy simulation)기법을 조합한 다상흐름 수치모델을 적용하여 중력류를 해석을 시도하였다. 수치해석결과를 실험값과 함께 기존 수치모델링 기법으로 구한 수치해와 비교분석하여 이 연구에서 개발 및 적용된 수치모델링 기법의 적용성을 평가한다.

  • PDF

A Study of Numerical Analysis for Stage Separation Behavior of Two-body Vehicle (비행체 단분리 거동 예측에 대한 수치 연구)

  • Park, Geunhong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.91-98
    • /
    • 2018
  • A numerical investigation of stage separation behavior of a two-body vehicle focusing on its flow characteristics is carried out. For this simulation, the separation of a booster from a vehicle is modeled using a chimera grid system and calculated with commercial code, $CFD-FASTRAN^{TM}$. Consideration of spring force, gravity and relative acceleration of a booster is the essential factor of a realistic simulation. In this study, it is validated that the booster separation time decreases with an increase in flight Mach number and angle of attack. In view of results thus far achieved, it is expected that the dynamics modeling and boundary condition set-up applied in this study will be useful for estimating safe stage separation and event sequencing of flight tests.

Effect of connection modeling on the seismic response of steel braced non-moment resisting frames

  • Bagheri, Saman;Tabrizi, Navid Vafi
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.591-601
    • /
    • 2018
  • Non-moment beam-to-column connections, which are usually referred to as simple or shear connections, are typically designed to carry only gravity loads in the form of vertical shears. Although in the analysis of structures these connections are usually assumed to be pinned, they may provide a small amount of rotational stiffness due to the typical connection details. This paper investigates the effects of this small rotational restraint of simple beam-to-column connections on the behavior and seismic response of steel braced non-moment resisting frames. Two types of commonly used simple connections with bolted angles, i.e., the Double Web angle Connection (DWC) and Unstiffened Seat angle Connection (USC) are considered for this purpose. In addition to the pinned condition - as a simplified representation of these connections - more accurate semi-rigid models are established and then applied to some frame models subjected to nonlinear pushover and nonlinear time history analyses. Although the use of bracing elements generally reduces the sensitivity of the global structural response to the behavior of connections, the obtained results indicate considerable effects on the local responses. Namely, our results show that consideration of the real behavior of connections is essential in designing the column elements where the pin-connection assumption significantly underestimates design of outer columns of upper stories.

Nonlinear regression methods and genetic algorithms for estimation of compression index of clays using toughness limit

  • Satoru Shimobe;Eyyub Karakan;Alper Sezer
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.371-382
    • /
    • 2024
  • Measurement or prediction of compression index (Cc) of soils is essential for assessment of total and differential settlement of structures. It is a well-known fact that this parameter is controlled by several index identifiers of soil including initial void ratio, Atterberg limits, overconsolidation ratio, specific gravity, etc. Many studies in the past proposed relationships for prediction of Cc based on different index properties. Therefore, this study aims to present a comparison of previously proposed equations for estimation of Cc. Data from literature was compiled, and a total of 90 and 623 test results on remolded and undisturbed specimens were used to question the validity of previously proposed equations. Nevertheless, the modeling ability of 7 and 12 equations for estimation of Cc of remolded and undisturbed soils were questioned by use of compiled data. Moreover, new empirical relationships based on initial void ratio and toughness limit for prediction of Cc was proposed by use of nonlinear multivariable regression and evolutionary based regression analyses. The results are promising-the performances of models established are quite acceptable, which are verified by statistical analyses.

The Study of Formation for Dokdo Seamounts at the Northeastern Part of the Ulleung Basin Using Gravity and Magnetic Data (중력 및 자력자료 분석에 의한 울릉분지 북동부 독도 및 주변 해산들의 형성 연구)

  • Kim, Chang-Hwan;Park, Chan-Hong;Ko, Young-Tak;Jung, Eui-Young;Kwak, Jun-Young;Yoo, Sang-Hoon;Min, Kyung-Duck
    • Economic and Environmental Geology
    • /
    • v.40 no.2 s.183
    • /
    • pp.153-170
    • /
    • 2007
  • Loading time and loading environment of the Dokdo seamounts were studied from flexure model and VGP(Virtual Geomagnetic Pole) determined by gravity and magnetic data. In spite of their similarity in size. a large difference about 50 mGal between gravity anomaly peaks of Dokdo and the Isabu Tablemount suggests different compensation degrees. Flexural modeling results show that the flexural rigidity(effective elastic thickness) of lithosphere for Dokdo is stronger(thicker) than that for the Isabu Tablemount. Also, it implies that the age of lithosphere at the time of loading of the Isabu Tablemount may be younger than that of Dokdo. Magnetic anomalies occur complicated over the Dokdo seamounts. Paleomagnetism was studied from VGP estimated by the least square and the seminorm magnetization methods with 1500 m upward continued magnetic anomalies. Age dating of Dokdo from previous study, flexural modeling, VGP, and geomagnetic polarity time scale suggest that after the cease of spreading in the Ulleung Basin, the Isabu Tablemount was formed first in normal polarity interval and followed by Dokdo. Also, they indicate that the fist large eruption of Dokdo was in normal polarity interval and the second large eruption in reversed polarity interval. The Simheungtaek Tablemount was formed in normal polarity interval between the formations of the Isabu Tablemount and Dokdo. These loading times for the Dokdo seamounts show a good coherence with the compressive stress period after the end of the opening of the East Sea. The Dokdo seamounts probably was caused by volcanism associated with the compressive stress.

Geophysical characteristics of seamounts around Dok Island (동해 독도주변 해산의 지구물리학적 특성)

  • 강무희;한현철;윤혜수;이치원
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.4
    • /
    • pp.267-285
    • /
    • 2002
  • Dok Island, a Pliocene volcano, lies in the southwestern part of the East Sea. Most the work to date have focused primarily on the petrolography of the island, and as a result, the morphological characteristics and internal structure of the volcanic edifices of the Dok Island remain poorly understood. To provide better constraints on these features, bathymetric data with multibeam echo sounder, 32-channel seismic and 3D gravity modeling were used in this study. Three positive topographic highs are present in the study area, and these highs satisfy the seamount criteria. They are named as Dokdo, Tamhae, and Donghae seamounts. 32-channel seismic survey was conducted to investigate the sediment thickness of the area, which shows that there are no sediments near the summit of seamounts. Away from the seamounts, however, sediment becomes thick(>2000 m) toward the western part of the study area, and sediments in the northern and southern parts are about 1000 m thick. Free-Air gravity anomalies in this study generally follow the bathymetric feature with less than -20 mGal at the western part, but increase towards the seamounts. In the summit of the Dokdo Seamount, anomalies reach over 120 mGal, and in Tamhae and Donghae seamounts, the peak anomaly shows 90 and 70 mGals, respectively. All seamounts have an isolated volcanic conduit in their centre and show regional compensation root with 0.5~1.5 km thickness. The flat-topped summit of the seamounts is probably caused by wave truncation, indicating the sea level at the time of formation of the flat-topped geometry. Comparison between the present-day sea level and subsidence level during the opening of the East Sea suggests that the seamounts in the study area have subsided by 200~300 m after the formation. Furthermore, it implies that the seamounts formed over 12~10 Ma.

A CFD Study of Oil Spill Velocity from Hole in the Hull of Oil Tanker (유조선 선체 파공에 따른 원유 유출 유속의 CFD 연구)

  • Choi, Dooyoung;Lee, Jungseop;Paik, Joongcheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.71-71
    • /
    • 2018
  • Sea pollution accidents have been occurred due to the increase of marine ship traffic. Oil spill from the hull hole induced by tanker collision results in the huge sea pollution. Proper and prompt reaction on such oil spill disaster is needed to minimize the damage. Thru-hull emergency wood plug is typically used to manually close small holes, while it is required to develop some mechanical devices for closing large holes in the hull due to huge fluid pressure. Accurate estimation of oil discharge and velocity from such holes are important to develop proper device to control hull hole damage. High resolution CFD modeling investigation on the configurations of hull hole of 7.5 m initial depth and 30 cm diameter, which was observed in the oil spill accident of the Hebei Sprit off the west coast of Korea in 2007, has been carried out to compute the oil spill velocity distribution in terms of flow depth. Friction loss due to the viscous flow and the discharge coefficient of crude oil with specific gravity SG = 0.85 and viscosity of $4-12cP(mPa{\cdot}s)$ at the temperature of $20^{\circ}C-100^{\circ}C$ are presented in terms of Reynolds number based on the results of high-resolution CFD modeling.

  • PDF

Modeling the Distribution Demand Estimation for Urban Rail Transit (퍼지제어를 이용한 도시철도 분포수요 예측모형 구축)

  • Kim, Dae-Ung;Park, Cheol-Gu;Choe, Han-Gyu
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.2
    • /
    • pp.25-36
    • /
    • 2005
  • In this study, we suggested a new approach method forecasting distribution demand of urban rail transit usign fuzzy control, with intend to reflect irregularity and various functional relationship between trip length and distribution demand. To establish fuzzy control model and test this model, the actual trip volume(production, attraction and distribution volume) and trip length (space distance between a departure and arrival station) of Daegu subway line 1 were used. Firstly, usign these data we established a fuzzy control model, nd the estimation accuracy of the model was examined and compared with that of generalized gravity model. The results showed that the fuzzy control model was superior to gravity model in accuracy of estimation. Therefore, wwe found that fuzzy control was able to be applied as a effective method to predict the distribution demand of urban rail transit. Finally, to increase the estimation precision of the model, we expect studies that define membership functions and set up fuzzy rules organized with neural networks.