1 |
Yeo, D., Atkins, E.M., Bernal, L.P. and Shyy, W. (2013), "Experimental characterization of lift on a rigid flapping wing", J. Aircr., 50(6), 1806-1821.
DOI
|
2 |
Barut, A., Das, M. and Madenci, E. (2006). "Nonlinear deformations of flapping wings on a micro air vehicle", Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, Rhode Island, U.S.A., May.
|
3 |
Beer, F.P., Johnston, E.R., DeWolf, J.T. and Mazurek, D.F. (2011), Mechanics of Materials, McGraw-Hill, New York, U.S.A.
|
4 |
Combes, S.A. and Daniel, T.L. (2003), "Into thin air: Contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth manduca sexta", J. Exper. Biol., 206(17), 2999-3006.
DOI
|
5 |
Daniel, T.L. and Combes, S.A. (2002), "Flexible wings and fins: Bending by inertial or fluid-dynamic forces?", Integr. Comparat. Biol., 42(5), 1044-1049.
DOI
|
6 |
De Rosis, A., Falcucci, G., Ubertini, S. and Ubertini, F. (2014), "Aeroelastic study of flexible flapping wings by a coupled lattice boltzmann-finite element approach with immersed boundary method", J. Flu. Struct., 49, 516-533.
DOI
|
7 |
Heathcote, S., Wang, Z. and Gursul, I. (2008), "Effect of spanwise flexibility on flapping wing propulsion", J. Flu. Struct., 24(2), 183-199.
DOI
|
8 |
Hollkamp, J.J. and Gordon, R.W. (2008), "Reduced-order models for nonlinear response prediction: Implicit condensation and expansion", J. Sound Vibr., 318(4), 1139-1153.
DOI
|
9 |
Kim, D.K. and Han, H. (2008). "A dynamic model of a flexible flapping wing for fluid-structure interaction analysis", Proceedings of the 15th International Congress on Sound and Vibration, Daejeon, Korea, July.
|
10 |
Isogai, K. and Harino, Y. (2007), "Optimum aeroelastic design of a flapping wing", J. Aircr., 44(6), 2040-2048.
DOI
|
11 |
Larijani, R.F. and DeLaurier, J.D. (2001), "A nonlinear aeroelastic model for the study of flapping wing flight", Progr. Astronaut. Aeronaut., 195, 399-428.
|
12 |
Meirovitch, L. and Tuzcu, I. (2003), Integrated Approach to the Dynamics and Control of Maneuvering Flexible Aircraft, NASA/CR-2003-211748, National Aeronautics and Space Administration, Langley Research Center.
|
13 |
Li, Y., Nahon, M. and Sharf, I. (2009), "Dynamics modeling and simulation of flexible airships", AIAA J., 47(3), 592-605.
DOI
|
14 |
Mazaheri, K. and Ebrahimi, A. (2010), "Experimental study on interaction of aerodynamics with flexible wings of flapping vehicles in hovering and cruise flight", Arch. Appl. Mech., 80(11), 1255-1269.
DOI
|
15 |
McEwan, M., Wright, J., Cooper, J. and Leung, A. (2001). "A finite element/modal technique for nonlinear plate and stiffened panel response prediction", Proceedings of the 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit Technical Papers, Anaheim, California, U.S.A., June.
|
16 |
MSC Nastran (2010), MSC Nastran 2010 User's Manual, MSC.Software Corporation, Sant Ana, U.S.A.
|
17 |
Nakata, T. and Liu, H. (2012), "A fluid-structure interaction model of insect flight with flexible wings", J. Comput. Phys., 231(4), 1822-1847.
DOI
|
18 |
Ogata, K. (2010), Modern Control Engineering, Prentice Hall, Upper Saddle River, New Jersey, U.S.A.
|
19 |
Platus, D. (1992), "Aeroelastic stability of slender, spinning missiles", J. Guid. Contr. Dyn., 15(1), 144-151.
DOI
|
20 |
Olivier, M. and Dumas, G. (2016), "Effects of mass and chordwise flexibility on 2D self-propelled flapping wings", J. Flu. Struct., 64, 46-66.
DOI
|
21 |
Pourtakdoust, S. and Assadian, N. (2004), "Investigation of thrust effect on the vibrational characteristics of flexible guided missiles", J. Sound Vibr., 272(1), 287-299.
DOI
|
22 |
Singh, B. and Chopra, I. (2007). "An aeroelastic analysis for the design of insect-based flapping wings", Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii, U.S.A., April.
|
23 |
Pourtakdoust, S.H. and Aliabadi, S.K. (2012), "Evaluation of flapping wing propulsion based on a new experimentally validated aeroelastic model", Sci. Iran., 19(3), 472-482.
DOI
|
24 |
Rizzi, S.A. and Muravyov, A.A. (2002), Equivalent Linearization Analysis of Geometrically Nonlinear Random Vibrations Using Commercial Finite Element Codes, NASA/TP-2002-211761, National Aeronautics and Space Administration.
|
25 |
Shyy, W., Berg, M. and Ljungqvist, D. (1999), "Flapping and flexible wings for biological and micro air vehicles", Progr. Aerosp. Sci., 35(5), 455-505.
DOI
|
26 |
Smith, M. (1995), "The effects of flexibility on the aerodynamics of moth wings-towards the development of flapping-wing technology", Proceedings of the 33rd Aerospace Sciences Meeting and Exhibit, Reno, NV, U.S.A., January.
|
27 |
Wilson, N. and Wereley, N. (2007), "Experimental investigation of flapping wing performance in hover", 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii, U.S.A., April.
|
28 |
Wootton, R.J. (1992), "Functional morphology of insect wings", Ann. Rev. Entomol., 37(1), 113-140.
DOI
|
29 |
Zhao, L., Huang, Q., Deng, X. and Sane, S.P. (2010), "Aerodynamic effects of flexibility in flapping wings", J. Roy. Soc. Interf., 7(44), 485-497.
DOI
|