• Title/Summary/Keyword: gravity compensation

Search Result 62, Processing Time 0.022 seconds

Gravity Compensation Techniques for Enhancing Optical Performance in Satellite Multi-band Optical Sensor (위성용 다중대역광학센서의 광학 성능 향상을 위한 자중보상기법)

  • Do-hee Yoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.127-139
    • /
    • 2024
  • This paper discusses a gravity compensation technique designed to reduce wavefront error caused by gravity during the assembly and alignment of satellite multi-band optical sensor. For this study, the wavefront error caused by gravity was analyzed for the opto-mechanical structure of multi-band optical sensor. Wavefront error, an indicator of optical performance, was computed by using the displacements of optics calculated through structural analysis and optical sensitivity calculated through optical analysis. Since the calculated wavefront error caused by gravity exceeded the allocated budget, the gravity compensation technique was required. This compensation technique reduces wavefront error effectively by applying the compensation load to the appropriate position of the housing tube. This method successfully meets the wavefront error budget for all bands. In the future, a gravity compensation equipment applying this technique will be manufactured and used for assembly and alignment of multi-band optical sensor.

A Study on Accuracy Improvement in Measuring Liquid Level inside Pressurized Vessels (압력 용기 수위 측정 오차 개선에 관한 연구)

  • Kim, Ho-Yol;Byun, Seung-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1889-1893
    • /
    • 2010
  • Differential pressure type level measuring systems have been using widely for industrial applications like drum level measurements in power plants. Because of difficulties in specific gravity compensation for vapor and liquid inside the vessel and the sensing lines, this type of measuring systems reveal significant measuring error. In this paper, the major reason causing errors on the differential pressure type level measurement is analyzed and a method of more accurate calculation for specific gravity compensation is introduced.

Fast Component Placement with Optimized Long-Stroke Passive Gravity Compensation Integrated in a Cylindrical/Tubular PM Actuator

  • Paulides, J.J.H.;Encica, L.;Meessen, K.J.;Lomonova, E.A.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.275-282
    • /
    • 2013
  • Applications such as vibration isolation, gravity compensation, pick-and-place machines, etc., would benefit from (long-stroke) cylindrical/tubular permanent magnet (PM) actuators with integrated passive gravity compensation to minimize the power consumption. As an example, in component placing (pick-and-place) machines on printed circuit boards, passive devices allow the powerless counteraction of translator including nozzles or tooling bits. In these applications, an increasing demand is arising for high-speed actuation with high precision and bandwidth capability mainly due to the placement head being at the foundation of the motion chain, hence, a large mass of this device will result in high force/power requirements for the driving mechanism (i.e. an H-bridge with three linear permanent magnet motors placed in an H-configuration). This paper investigates a tubular actuator topology combined with passive gravity compensation. These two functionalities are separately introduced, where the combination is verified using comprehensive three dimensional (3D) finite element analyses.

Structural Implications of Gravity Anomalies around Dok Island and its Surrounding Seamounts in the East Sea (독도 및 그 주변 해산 중력 이상의 지구조적 해석)

  • 김원균;김창환;박찬홍;한현철;권문상;민경덕;김백수;최영섭
    • Economic and Environmental Geology
    • /
    • v.33 no.6
    • /
    • pp.537-545
    • /
    • 2000
  • Shipborne gravity data are analyzed to investigate crustal structure under Dok Island and its surrounding seamounts located in border of Ulleung Basin and Oki Bank in the East Sea. Relatively low free-air gravity anomaly compared with the volume of seamounts may be explainable by isostatic compensation. From 1 st to 3rd Dokdo Seamounts, the decrease of free-air and Bouguer gravity anomalies implies the different degree of isostatic compensation, crustal thickness or/and density contrast. 3-D gravity modelling shows that seamounts have the mirror roots for regional Airy isostatic compensation, and from Ulleung Basin to Oki Bank, Moho discontinuity deepens and the density of crust is decreases. The results infer that study area is transitional zone from thin oceanic to thick continental crust. The depth of Moho discontinuity is about 15∼16 km, which may be interpreted as an uplifting of Mantle to shallow depth comparing with other borders of the Ulleung Basin.

  • PDF

Novel Gravity Compensation Mechanism by Using Wire-Winding (와이어 와인딩을 이용한 신개념 중력보상 메커니즘)

  • Lee, DongGyu;Lee, SangHo;Park, JungWhan;Seo, TaeWon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.733-737
    • /
    • 2016
  • In this paper, we propose a mechanism that can compensate for gravity in a robot manipulator. Industry robots generate torque due to carrying heavy weight. For this reason, the robots need high specification motors, which increases the prices of the robots and their production costs. In order to resolve these problems, a mechanism for gravity compensation has been developed using a spring and wire system. But this system has problems related to wire stretching. A winding mechanism is therefore used to supplement this drawback of the wire. The robot used was developed by the 1-DOF system. Analysis was performed for the performance of the mechanism. Experiments were conducted to compare simulation results and experimental results.

Optimal Design of Passive Gravity Compensation System for Articulated Robots (수직다관절 로봇의 중력보상장치 최적설계)

  • Park, Jin-Gyun;Lee, Jae-Young;Kim, Sang-Hyun;Kim, Sung-Rak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.103-108
    • /
    • 2012
  • In this paper, the optimal design of a spring-type gravity compensation system for an articulated robot is presented. Sequential quadratic programming (SQP) is adopted to resolve various nonlinear constraints in spring design such as stress, buckling, and fatigue constraints, and to reduce computation time. In addition, continuous relaxation method is used to explain the integer-valued design variables. The simulation results show that the gravity compensation system designed by proposed method improves the performance effectively without additional weight gain in the main workspace.

Design of Knee-Pelvis Joint in the Biped Robot for Shock Reduction and Gravity Compensation (충격 감소 및 중력 보상을 위한 이족보행로봇의 무릎-골반 관절 설계)

  • Kim, Young-Min;Kim, Yong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.136-142
    • /
    • 2015
  • In the paper, a design method of knee and pelvis joint in the biped robot is proposed for shock absorption and gravity compensation. Similarly to the human's body, the knee joints of the biped robot support most body weight and get a shock from the landing motion of the foot on the floor. The torque of joint motor is also increased sharply to keep the balance of the robot. Knee and pelvis joints with the spring are designed to compensate the gravity force and reduce the contact shock of the robot. To verify the efficiency of the proposed design method, we develope a biped robot with the joint mechanism using springs. At first, we experiment with the developed robot on the static motions such as the bent-knee posture both without load and with load on the flat ground, and the balance posture on the incline plane. The current of knee joint is measured to analyze the impact force and energy consumption of the joint motors. Also, we observe the motor current of knee and pelvis joints for the walking motion of the biped robot. The current responses of joint motors show that the proposed method has an effect on shock reduction and gravity compensation, and improve the energy efficiency of walking motions for the biped robot.

Approximate Friction and Gravity Compensation in Haptic Laparoscopic Surgery Simulator (햅틱 복강경 수술 시뮬레이터의 마찰력 및 중력 보상)

  • Kim, Sang-Hyun;Lee, Chang-Gyu;Kim, Ji-Suk;Ryu, Je-Ha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.883-888
    • /
    • 2011
  • Laparoscopic surgery is being used in various surgical fields because it minimizes scarring. Laparoscopic operations require practical hand skills, so surgeons train on animals and via surgery training tool sets. However, these tool sets do not give the surgeon the sensation of touching real organs. A recently developed laparoscope simulator has a high friction force along the translational axis and a high gravity force along the pitch axis, and therefore it does not permit the operator to control his or her hands delecately. In the paper, the friction force along the axes is auumed to depend on the veolcity, and the gravity force on the angle and distance. We develop a compensation model that combines the gravity and friction force models.

Gravity Compensator for the Roll-pitch Rotation (Roll-pitch 중력 보상 기구 설계)

  • Cho, Chang-Hyun;Lee, Woo-Sub;Kang, Sung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.688-694
    • /
    • 2010
  • This paper presents a gravity compensator for the manipulator of a service robot. The manipulator of a service robot is operated with low velocity for the safety reason in most cases. In this situation gravitational torques generated by the mass of links are often much greater than dynamic torques for motion. A gravity compensator can counterbalance the gravitational torques, thereby enabling to utilize relatively low power motors. In this paper the gravity compensation for the roll-pitch rotation is considered which is often used for the shoulder joints of the manipulator of a service robot or humanoid robot. A gimbals is implemented and two 1-dof gravity compensators are equipped at the base. One compensates the gravitational torque at the roll joint and another provides the compensational torque for the gimbals. Various analyses showed that the proposed compensator can counterbalance the gravitational torques of 87% at the pitch joint and 50% at the roll joint. It is verified from dynamic simulations that the proposed compensator effectively counterbalances the gravitational torques.