• Title/Summary/Keyword: gravity building

Search Result 203, Processing Time 0.027 seconds

Evalulation of Specific Gravity in Post Member by Drilling Resistance Test

  • Park, Chun-Young;Kim, Se-Jong;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.1-9
    • /
    • 2006
  • The structural wooden members of the ancient building are deteriorated by fungi and termite over time. The deteriorate of the members causes the decrease of the specific gravity and the strength of it, so the stability of the building is threatened. Therefore, in this study, the evaluation of the specific gravity, which is correlated with the strength of the wood, was conducted in the post member using Nondestructive Evaluation (NDE) - Drilling Resistance Test (DRT). For the purpose of it, the specific gravity and drilling resistance of small specimens was measured to obtain the correlation between the specific gravity and the drilling resistance. And then, the drilling resistance test of the post members, which were expected to have the deteriorated parts, was performed. Consequently, the correlation between the specific gravity and the drilling resistance was very high ($R^2=0.89$) and the distributions of the specific gravity were evaluated for the each member. Also, the results were verified by the visual inspection of the cross section of it. Especially, the various variations of the wood member such as the deteriorated parts with termite or fungi and the crack could be detected exactly but the knot couldn't because the drill could pass by or could not penetrate the knot.

Implications of the effects of gravity load for earthquake resistant design of multistory building structurtes (고층건물의 내진설계에 미치는 중력하중의 영향)

  • 이동근;이석용
    • Computational Structural Engineering
    • /
    • v.6 no.3
    • /
    • pp.67-80
    • /
    • 1993
  • This paper presents the results of an analytical study to evaluate the inelastic seismic response characteristics of multistory building structures, the effects of gravity load on the seismic responses and its implications on the earthquake resistant design. Static analyses for incremental lateral force and nonlinear dynamic analyses for earthquake motions were performed to evaluate the seismic response of example multistory building structures. Most of considerations are placed on the distribution of inelastic responses over the height of the structure. When an earthquake occurs, bending moment demand is increased considerably from the top to the bottom of multistory structures, so that differences between bending moment demands and supplies are greater in lower floos of multistory structures. As a result, for building structures designed by the current earthquake resistant design procedure, inelastic deformations for earthquake ground motions do not distribute uniformly over the height of structures and those are induced mainly in bottom floors. In addition, gravity load considerded in design procedure tends to cause much larger damages in lower floors. From the point of view of seismic responses, gravity load affects the initial yield time of griders in earlier stage of strong earthquakes and results in different inelastic responses among the plastic hinges that form in the girders of a same floor. However, gravity load moments at beam ends are gradually reduced and finally fully relaxed after a structure experiences some inelastic excursions as a ground motion is getting stronger. Reduction of gravity load moment results in much increased structural damages in lower floors building structures. The implications of the effects of gravity load for seismic design of multistory building structures are to reduce the contributions of gravity load and to increased those of seismic load in determination of flexual strength for girders and columns.

  • PDF

IMPROVED EARTHQUAKE RESISTANT DESIGN OF MULTISTORY BUILDING FRAMES (고층건물 내진설계기법의 개선)

  • Lee, Dong-Guen-;Lee, Seok-Youn-
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.04a
    • /
    • pp.72-78
    • /
    • 1991
  • An improved procedure for earthquake resistant design of multistory building structures is proposed in this study. The effect of gravity load on seismic response of structures is evaluated through nonlinear dynamic analyses of a single story example structure. The presence of gravity load tends to initiate plastic hinge formation in earlier stage of a strong earthquake. However, the effect of gravity load seems to disapper as ground motion is getting stronger. And one of shortcomings in current earthquake resistant codes is overestimation of gravity load effects when earthquake load is applied at the same time so that it may leads to less inelastic deformation or structural damage in upper stories, and inelastic deformation is increased in lower stories. Based on these observation, an improved procedure for earthquake resistant design is derived by reducing the factor for gravity load and inceasing that for seismic load. Structures designed by the proposed design procedure turned out to have increased safety and stability against strong earthquakes.

  • PDF

A Study on the Flow Characteristics of an Oxidizer Feed Section for Wet-air Oxidation in Gravity Pressure Reactor (중력식 습식산화반응기 내 산화제 공급부의 유동특성에 관한 연구)

  • Lee, Hongcheol;Hwang, Inju
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.3
    • /
    • pp.10-13
    • /
    • 2016
  • The wet-air oxidation in gravity pressure reactor is effective for organic waste treatment with energy saving under high pressure and high temperature. But its oxidation control is difficulty because its multi-phase flow characteristics is very complicated. The flow characteristics of an oxidizer feed section in the gravity pressure reactor were investigated using numerical method which are verified by comparison with experimental results. In this study, the results showed that the flow rate of oxidizer have an effect on the generation of bubble around feed section.

Experimental Research on the Comparison of Gravity Moisture Content and Relative Moisture Content in Calculating the Quantitative Percentage of Moisture Content (중량함수율 및 상대함수율 비교에 따른 정량적인 함수율 산정에 대한 실험적 연구)

  • Byun, Yong-Hyun;Ryu, Dong-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.134-135
    • /
    • 2016
  • This study aims to compare relative moisture content and gravity moisture content in calculating the rational percentage of moisture content. High-strength concrete, which is made of blast-furnace slag and silica fume, was used as the compound for this study, and the specimens were made into a saturated condition through the vacuum suction. According to the results of this study, all specimens were completely dried when they were under the temperature of 105℃ for more than 31 days. They were fully saturated after 72 hours through vacuum suction. In addition, relative moisture content responded more sensitively to moisture content than gravity moisture content did, so it can be concluded that relative moisture content is better in calculating the rational percentage of moisture content.

  • PDF

Progressive collapse of steel-framed gravity buildings under parametric fires

  • Jiang, Jian;Cai, Wenyu;Li, Guo-Qiang;Chen, Wei;Ye, Jihong
    • Steel and Composite Structures
    • /
    • v.36 no.4
    • /
    • pp.383-398
    • /
    • 2020
  • This paper investigates the progressive collapse behavior of 3D steel-framed gravity buildings under fires with a cooling phase. The effect of fire protections and bracing systems on whether, how, and when a gravity building collapses is studied. It is found that whether a building collapses or not depends on the duration of the heating phase, and it may withstand a "short-hot" fire, but collapses under a mild fire or a "long-cool" fire. The collapse time can be conservatively determined by the time when the temperature of steel columns reaches a critical temperature of 550 ℃. It is also found that the application of a higher level of fire protection may prevent the collapse of a building, but may also lead to its collapse in the cooling phase due to the delayed temperature increment in the heated members. The tensile membrane action in a heated slab can be resisted by a tensile ring around its perimeter or by tensile yielding lines extended to the edge of the frame. It is recommended for practical design that hat bracing systems should be arranged on the whole top floor, and a combination of perimeter and internal vertical bracing systems be used to mitigate the fire-induced collapse of gravity buildings. It is also suggested that beam-to-column connections should be designed to resist high tensile forces (up to yielding force) during the cooling phase of a fire.

Derivation of Estimating Formulas for Seismic Strength of RC Frames Designed to Gravity Loads (중력하중에 대하여 설계된 RC 골조의 내진 저항력 추정식의 유도)

  • 이영욱
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.63-71
    • /
    • 2002
  • The seismic design regulations have not been applied to the low-rised buildings which are less than 6 stories in Korea. For these buildings which are designed only for gravity loads, theoretical formulas which can estimate the seismic strength of building are derived. The column hinge sway and beam hinge sway mechanism are assumed for the formulars. For the comparisons with the formulas, the results of push-over analyses of 3 and 4 storied buildings are used. It can be shown that the estimating formulas correspond well with the push-over analyses. And the seismic strength of building has a little relations with the number of bay and becomes larger as the building becomes lower. Also, as the ratio and strength of reinforcing steel increase, the seismic strength of building is increased.

Modelling of reinforced concrete flat slab-column connections for system-scale seismic analyses of high-rise buildings

  • T.Y. Yang;O. AlHarras;L. Tobber;O. Sargazi
    • Computers and Concrete
    • /
    • v.31 no.1
    • /
    • pp.23-32
    • /
    • 2023
  • Reinforced concrete flat slab (RCFS) with columns is a standard gravity floor system for tall buildings in North America. Typically, RCFS-column connections are designed to resist gravity loads, and their contribution to resisting seismic forces is ignored. However, past experimental research has shown that RCFS-column connections have some strength and ductility, which may not be ignored. Advanced numerical models have been developed in the past to determine the nonlinear cyclic behavior of RCFS-column connections. However, these models are either too complicated for nonlinear dynamic analysis of an entire building or not developed to model the behavior of modern RCFS-column connections. This paper proposes a new nonlinear model suitable for modern RCFS-column connections. The numerical model is verified using experimental data of specimens with various material and reinforcement properties. A 40-story RC shear wall building was designed and analyzed to investigate the influence of RCFS on the global response of tall concrete buildings. The seismic responses of the building with and without the RCFS were modelled and compared. The results show that the modelling of RCFS has a significant impact on the inter-story drifts and force demands on both the seismic force-resisting and gravity elements.

Outline and Performance Evaluation of High Quality Recycled Fine Aggregate Manufacturing System Using Drying Gravity Separation Method (건식비중분리법에 의한 고품질순환잔골재생산시스템의 개요 및 성능평가)

  • Kim Moo-Han;Kim Gyu-Yong;Choi Kyongl-Yeul;Lee Do-Heun;Song Ha-Young;Roh Kyung-Min
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.111-114
    • /
    • 2006
  • Recently, it is increased on the concern for the reuse of waste concrete because of the shortage of natural aggregate and the increase of waste concrete. And recycled coarse aggregate is used variously, but the existing wet method producted recycled fine aggregate has problem like the high price facilities, the long time progress of the work and the poor of recycled fine aggregate. The aim of this study is to investigate outline and performance evaluation of the drying specific gravity separation method to product high duality recycled fine aggregate. Finally, this study is shown investigate process flowing of drying separation type with gravity manufacture, producte system and function of detail devices. The performance of the method of drying specific gravity separation is certificated as the qualities of recycled fine aggregate satisfied the KS

  • PDF

Comparison Study of O/D Estimation Methods for Building a Large-Sized Microscopic Traffic Simulation Network: Cases of Gravity Model and QUEEENSOD Method (대규모 미시교통시뮬레이션모형 구축을 위한 O/D 추정 방법 성능 비교 - 중력모형과 QUEENSOD 방법을 중심으로 -)

  • Yoon, Jung Eun;Lee, Cheol Ki;Lee, Hwan Pil;Kim, Kyung Hyun;Park, Wonil;Yun, Ilsoo
    • International Journal of Highway Engineering
    • /
    • v.18 no.2
    • /
    • pp.91-101
    • /
    • 2016
  • PURPOSES : The aim of this study was to compare the performance of the QUEENSOD method and the gravity model in estimating Origin-Destination (O/D) tables for a large-sized microscopic traffic simulation network. METHODS : In this study, an expressway network was simulated using the microscopic traffic simulation model, VISSIM. The gravity model and QUEENSOD method were used to estimate the O/D pairs between internal and between external zones. RESULTS: After obtaining estimations of the O/D table by using both the gravity model and the QUEENSOD method, the value of the root mean square error (RMSE) for O/D pairs between internal zones were compared. For the gravity model and the QUEENSOD method, the RMSE obtained were 386.0 and 241.2, respectively. The O/D tables estimated using both methods were then entered into the VISSIM networks and calibrated with measured travel time. The resulting estimated travel times were then compared. For the gravity model and the QUEENSOD method, the estimated travel times showed 1.16% and 0.45% deviation from the surveyed travel time, respectively. CONCLUSIONS : In building a large-sized microscopic traffic simulation network, an O/D matrix is essential in order to produce reliable analysis results. When link counts from diverse ITS facilities are available, the QUEENSOD method outperforms the gravity model.