• Title/Summary/Keyword: gravel bed

Search Result 102, Processing Time 0.021 seconds

A Study on the filtering bed of porous sintering-product and hydrophytes for sewage treatment (오·폐수처리를 위한 수생식물 다공성 소결체여상의 기초연구)

  • Kim, Ju-Hyung;Yun, Chan;Oh, Joon-Seong
    • Clean Technology
    • /
    • v.7 no.2
    • /
    • pp.89-97
    • /
    • 2001
  • The purpose of this study was to find the optimum condition of the high removal efficiency of water pollutant as sewage treatment technology using a filtering bed charged with porous sintering-pellet which was planted with hydrophytes. Experiment was carried out by changing concentration of water pollutants(COD, T-N, T-P), kind of hydrophyte, kinds of filtering material and size, and HRT. The result of removal efficiency was obtained as following: COD removal 73.8~87.1% for input concentration range of 50~450mg/L, T-N removal 61.3~77.3% for input concentration range of 7~124mg/L, T-P removal 89.5~99.1% for input concentration ranger of 3~27mg/L. In a comparative experiment of three kinds of hydrophyte(Iris pseudoacorus, Phragmites communis $T_{RIN}$., Oenanthe javanica Dc.), the best removal efficiency of COD and T-N was gained with Iris pse-udoacorus, and Phragmites communis $T_{RIN}$ showed better result than two hydrophytes for the removal efficiency of T-P. In a comparative experiment of four kinds of filtering-materials, the removal efficiencies were in the order of porous sintering-pellet, gravel, nonused-tire and nonused-concrete. It was found that for the porous sintering-pellet, the smaller its diameter, the better its result. In the filtering bed in which was charged with porous sintering-pellets of 5mm diameter and planted with Iris pseudoacorus, the removal efficiency of COD, T-N and T-P were over 80%, 70% and 90% under the concentration of COD 250mg/L, T-N 70mg/L and T-P 15mg/L for 24hrs treatment. Thus, we concluded that a filtering bed charged with porous sintering-pellet and planted with hydrophytes will be suitable for treatment of sewage water as a pro-natural treatment technology.

  • PDF

Volcaniclastic Sedimentation of the Sejong Formation (Late Paleocene-Eocene), Barton Peninsula, King George Island, Antarctica

  • Yoo, Chan-Min;Choe, Moon-Young;Jo, Hyung-Rae;Kim, Yae-Dong;Kim, Ki-Hyune
    • Ocean and Polar Research
    • /
    • v.23 no.2
    • /
    • pp.97-107
    • /
    • 2001
  • The Sejong Formation of Late Paleocene to Eocene is a lower volcaniclastic sequence unconformably overlain by upper volcanic sequence, and distributed along the southern and southeastern cliffs of the Barton Peninsula. The Sejong Formation is divided into five sedimentary facies; disorganized matrix-supported conglomerate (Facies A), disorganized clast-supported conglomerate (Facies B), stratified clast-supported conglomerate (Facies C), thin-bedded sandstone (Facies D), and lapilli tuff (Facies E), based on sedimentary textures, primary sedimentary structures and bed geometries. Individual sedimentary facies is characterized by distinct sedimentary process such as gravel-bearing mudflows or muddy debris flows (Facies A), cohesionless debris flows (Facies B),unconfined or poorly confined hyperconcentrated flood flows and sheet floods (Facies C), subordinate streamflows (Facies D), and pyroclastic flows (Facies E). Deposition of the Sejong Formation was closely related to volcanic activity which occurred around the sedimentary basin. Four different phases of sediment filling were identified from constituting sedimentary facies. Thick conglomerate and sandstone were deposited during inter-eruptive phases (stages 1, 3 and 4), whereas lapilli tuff was formed by pyroclastic flows during active volcanism (stage 2). These records indicate that active volcanism occurred around the Barton Peninsula during Late Paleocene to Eocene.

  • PDF

Preference of Physical Microhabitat on the $1^{st}$-class Endangered Species, Gobiobotia naktongensis inhabiting the Gam Stream, Tributary of the Nakdong River

  • Seo, Jin-Won;Kim, Hee-Sung;Yi, Hye-Suk;Jeong, Sun-A
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.495-501
    • /
    • 2009
  • The study was conducted in 2007~2008 in order to understand preference of physical microhabitat on the $1^{st}$-class endangered species, Gobiobotia naktongensis inhabiting the Gam Stream, tributary of Nakdong River. The total number of fish caught from the study sites was 3,671 representing 7 families 24 species. There were 8 Korean endemic species including Odontobutis platycephala, and 2 introduced species (Carassius cuvieri, Micropterus salmoides) were found. According to investigation and analysis of physical microhabitat on Gobiobotia naktongensis caught in the Gam Stream, a total of 57 individuals were found at shallow depth (0.14~0.46 m) and run (0.239~0.585m $sec^{-1}$). As a result of sieve analysis, stream beds consisted of about 1% gravel and 99% sand (83.4% coarse sand, 15.6% find sand). Therefore, Gobiobotia naktongensis seemed to inhabit shallow-run with coarse sand bed than deep-pool microhabitat. The findings indicate preference of physical microhabitat on Gobiobotia naktongensis, and it is important to enhance efficiency of fish conservation and ecological restoration with understanding species-specific characteristics in microhabitat including protected species.

Architecture and Depositional Style of Gravelly, Deep-Sea Channels: Lago Sofia Conglomerate, Southeyn Chile (칠레 남부 라고 소피아 (Lago Sofla) 심해저 하도 역암의 층구조와 퇴적 스타일)

  • Choe Moon Young;Jo Hyung Rae;Sohn Young Kwan;Kim Yeadong
    • The Korean Journal of Petroleum Geology
    • /
    • v.10 no.1_2 s.11
    • /
    • pp.23-33
    • /
    • 2004
  • The Lago Sofia conglomerate in southern Chile is a lenticular unit encased within mudstone-dominated, deep-sea successions (Cerro Toro Formation, upper Cretaceous), extending from north to south for more than $120{\cal}km$. The Lago Sofia conglomerate is a unique example of long, gravelly deep-sea channels, which are rare in the modern environments. In the northern part (areas of Lago Pehoe and Laguna Goic), the conglomerate unit consists of 3-5 conglomerate bodies intervened by mudstone sequences. Paleocurrent data from these bodies indicate sediment transport to the east, south, and southeart. The conglomerate bodies in the northern Part are interpreted as the tributary channels that drained down the Paleoslope and converged to form N-S-trending trunk channels. In the southern part (Lago Sofia section), the conglomerate unit comprises a thick (> 300 m) conglomerate body, which probably formed in axial trunk channels of the N-5-trending foredeep trough. The well-exposed Lago Sofia section allowed for detailed investigation of sedimentary facies and large-scale architecture of the deepsea channel conglomerate. The conglomerate in Lago Sofia section comprises stratified conglomerate, massive-to-graded conglomerate, and diamictite, which represent bedload deposition under turbidity currents, deposition by high-density turbidity currents, and muddy debris flows, respectively. Paleocurrent data suggest that the debris flows originated from the failure of nearby channel banks or slopes flanking the channel system, whereas the turbidity currents flowed parallel to the orientation of the overall channel system. Architectural elements produced by turbidity currents represent vertical stacking of gravel sheets, lateral accretion of gravel bars, migration of gravel dunes, and filling of channel thalwegs and scoured hollows, similar to those in terrestrial gravel-bed braided rivers. Observations of large-scale stratal pattern reveal that the channel bodies are offset stacked toward the east, suggestive of an eastward migration of the axial trunk channel. The eastward channel migration is probably due to tectonic tilting related to the uplift of the Andean protocordillera just west of the Lago Sofia deep-sea channel system.

  • PDF

The Effect of Pervious Pavement on Reducing the Surface Runoff (투수성 포장재의 우수 표면유출 저감 효과)

  • Lee, Chun-Seok;Ryu, Nam-Hyung;Han, Seung-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.6
    • /
    • pp.26-37
    • /
    • 2008
  • The purpose of the study was to evaluate the effect of pervious pavements on reducing the surface runoff caused by rainfall. The surface runoff from twelve steel experimental beds with different pavement had been recorded every minute from May to September 2008, by the measuring system of tipping buckets(0.1mm/count) and data aquisition systems(National Instrument's Labview and DAQ boards & Autonics PR12-4). The dimension of the experimental bed was $1.5m(W){\times}2.0m(L){\times}0.6m(D)$ and eleven different kinds of vegetational(grass, grass+cubic stone, grass+hole brick), modular(brick, cubic stone, small cubic stone, wood block, interlocking block, clay brick, granular clay brick) and granular(naked soil, gravel) paving materials and concrete were applied for the comparison. Six rain events with depth over 30mm were selected and compared. The maximum depth of the rainfall selected was 137.5mm for 28 hours, and the minimum 30mm for 5 hours. The maximum rainfall per hour was 23mm/hr and the minimum 11.4mm/hr. The major findings were as follows; 1. All pervious pavement applied reduced over 75% of the surface runoff compared with concrete pavement. The grassy and porous pavements were relatively efficient in reducing surface runoff. 2. The grass was the more efficient as intercepting average 69.5mm of initial surface runoff, and maximum 77.8mm at the condition of 13.5mm/hr rainfall. The next was gravel intercepting maximum 65.5mm at the condition of 13.5mm/hr and the 40.9mm at 19.1mm/hr, average 55.7mm. 3. The modular pavements common in urban area were not good in intercepting the runoff except the 'clay granular brick' compared with others. The 'clay granular brick' showed relatively efficient intercepting average 14.1mm, which was the bigger amount than the 'grass+hole brick'. 4. The 'naked soil' were more effective than the 'concrete', 'brick', and 'interlocking block' in reducing the surface runoff, but less efficient than other materials. The capacity of the 'naked soil' to intercept the initial rainfall was similar to the 'brick'. As summary, the more grassy and porous pavement shows more effective in reducing surface runoffs.

Evaluation of Side-ditch Erosion Factors and Judgment of Side-ditch Stability in Forest Road (임도(林道) 옆도랑의 침식요인(浸蝕要因) 평가(評價)와 안정성(安定性) 판별(判別)에 관(關)한 연구(硏究))

  • Lee, Hae-Joo;Ji, Byoung-Yun;Jung, Do-Hyun;Kim, Jong-Yoon;Cha, Du-Song
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.3
    • /
    • pp.397-404
    • /
    • 2000
  • This study was carried out to investigate the influence of the road structure and site conditions on side-ditch stability of forest road. For experimental purposes, the forest road in the Kwangrung Experimental Forest, Korea Forestry Research Institute, was chosen as a study site. A total of 556 plots wes set up as every longitudinal gradient changing points by belt-transect method. Data of 10 road structural characteristics and side-ditch stability were collected from each plot and analysed by Quantification II. The main factors in order of partial correlation coefficient were longitudinal gradient, road position, inclination of cut-slope, constituent material of cut-slopes, distance of surface flow, cross-sectional shape of road, pavement material, vegetation of cut-slopes and length of cut-slope. The erosion of side-ditch of forest road occurred in the following cases; more than 8% of the longitudinal gradient, road position of hill under side and foot hill, more than $50^{\circ}$ of inclination of cut-slope, constituent material of cut-slopes of hard soil and gravel soil, more than 80m of distance of surface flow, pavement material with earth or gravel, more than medium covered of vegetation of cut-slopes, and the straight and convex form of road-bed.

  • PDF

Effects of Mixing Condition and Filtration Velocity on Turbidity Removal in a Contact Roughing Filter (접촉여과방식 거친여과지에서 혼화조건과 여과속도가 고탁도 제거에 미치는 영향)

  • Park, Noh-Back;Park, Sang-Min;Hong, Jin-Ah;Jun, Hang-Bae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.3
    • /
    • pp.359-366
    • /
    • 2007
  • Slow sand filtrations have been widely used for water treatment in small communities, however their capacity is often limited by high turbidity in the raw water. For this reason, several pre-treatment facilities were required for a slow sand filter. Turbidity removal from the highly turbid raw water was investigated in roughing filters as a pre-treatment process. The roughing filters followed by rapid mixing tank were operated in the form of a contact filtration. In several jar tests, the predetermined optimum aluminium sulfate (alum) doses for turbid water of 30 and 120NTU were 30 and 50mg/L, respectively. At the optimum alum dose, physically optimum parameters including G value of $220sec^{-1}$ and rapid mixing time of 3 minutes were applied to the contact filtration system. Without addition of alum, the filtrate turbidity from the roughing filters, packed respectively with different media such as sand, porous diatomite ball and gravel, was in the range of 5~30NTU at filtration velocities of 30 and 50m/day. However, the application of a contact filtration to roughing filters showed stably lower filtrate turbidity below 1.0NTU at filtration velocity of 30 m/day. Although the filtration velocity increased to 50m/day, filtrate turbidity was still below 1.0NTU in both single and double layer roughing filters. At influent turbidity of 120NTU, the filtrate turbidity was over 5 NTU in the triple layer roughing filter, which shortened the filter run time. The flocs larger than $10{\mu}m$, formed in the rapid mixing tank, were almost captured through the roughing filter bed, while the almost flocs smaller than $10{\mu}m$ remained in filtrate.

Sedimentological Study of Littoral Beach Sand in Busan Area, South Korea (부산일원(釜山一圓) 연안해빈사(沿岸海賓砂)의 퇴적학적(堆積學的) 연구(硏究))

  • Lee, You Dae;Choi, Kwang Sun
    • Economic and Environmental Geology
    • /
    • v.16 no.2
    • /
    • pp.65-78
    • /
    • 1983
  • This report deals with the sedimentological study of the littoral sand of beaches in the Busan area. The purpose of this report is to know the grain size, mineralogical composition, heavy mineral and clay mineral of the beach sands, and gravity measurements of the Nagdong River Deltas. 1) As a whole, the littoral sand of the beaches are composed of uniformly medium grained, moderately sorted and nearly symmetrical. The barrier sand of the Nagdong Estuary is composed of fine grained, well sorted and nearly symmetrical. 2) The littoral sand of the beaches is transported by saltation and rolling. The barrier sand of the Nagdong Estuary is transported by suspension and saltation. 3) In the littoral sand of the beaches, the ratio of feldspar to quartz is 1 :2.31 and in the barrier sand of the Nagdong Estuary 1:1.40. 4) The content of heavy mineral of samples ranges from 0.54 to 3.87 %. The principal heavy minerals are hornblende, pyroxene, epidote, garnet, leucoxene, zircon, apatite, magnetite, hematite and ilmenite with minor accessories of rutile and olivine. 5) The x-ray diffraction analysis of the clay mineral informs the existence of quartz, feldspar, kaolinite and montmorillonite. The montmorillonite is considered to have been derived from the alteration of acidic volcanic rocks. 6) To determine the depositional structure of the Nagdong Estuary, Gravity measurements were made. Free air anomaly ranges from 14.5 mgal to 33.5 mgal and Bouguer anomaly ranges from 14.3 to 23.5 mgal and both are closely related to the topography. According to the interpreted layer structure, the upper layer composing sand, silt and clay, the intermediate layer composing sand with gravel, the lower layer composing weathered and soft rock, and bed rock composing hornfels or andesite. 7) The depositional environments of the study, the littoral area is dominated by the marine environment and the Nagdong Estuary by the mixed environment.

  • PDF

Numerical Modelling of the Adjustment Processes of Minning Pit in the Dredged Channels (수치모의를 이용한 준설하천의 웅덩이 적응에 관한 연구)

  • Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.10
    • /
    • pp.921-932
    • /
    • 2010
  • In this study, the adjustment processes of the disturbed channels by sand or gravel mining were investigated by a two dimensional numerical model in the generalized coordinate system. As a numerical scheme, the CIP (cubic interpolated pseudoparticle method) method was used to calculate the advection term in the flow field and central difference method was used to the diffusion term in it. The pit of the channel was partially filled with sediment at the toe of the pit upstream. As time increased, the headcut erosion upstream in the pit was decreased due to the sediment inflow. The almost inflow sediment upstream was trapped into the pit and the sediment deposit wedge migrated downstream in the pit with the steep submerged angle of repose. The numerical model was reproduced well the evolution processes of the channel. The mining pit migrated with speed as the channel was steep, and the numerical results were in overall agreement with the experimental results.

The Ceomorphic Development of Alluvial Fans in Cheongdo Basin, Gyeongsangbuk-do( Prevince), South Korea (경북 청도분지의 선상지 지형발달)

  • Hwang Sang-Ill
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.4
    • /
    • pp.514-527
    • /
    • 2004
  • We investigated the distribution and geomorphic development of alluvial fans at Cheongdo- and Hweyang-eup(town) in the Cheongdo Basin, Gyeongsangbuk-do(Province) of Korea. The alluvial fans of study area are formed confluently to the E-W direction at the northern slope of the Mt. Namsan(840 m). They are classified into Higher surface, Middle surface, and Lower surface according to a relative height to a river bed. And the older alluvial fan is, the deeper gravel in the stream deposits is weathered. The magnitude of each surface composing of confluent fans is related to that of the drainage basin. So called fan-basin system of magnitude on the study area is on the positive(+) relation in the study area. The large fans over 1km in radius are found on the basin of andesite rock which is resistant to the weathering and erosion. Moreover there is no tectonic movement in the basin. It means the most important element influenced on the fan formation is not tectonic movement, but the Quaternary climatic change, which is the periglacial climate alternating glacial and interglacial stages during the Quaternary. Therefore alluvial fans would distribute in Korea overall influenced by the Quaternary climatic change.