DOI QR코드

DOI QR Code

Numerical Modelling of the Adjustment Processes of Minning Pit in the Dredged Channels

수치모의를 이용한 준설하천의 웅덩이 적응에 관한 연구

  • Jang, Chang-Lae (Department of Civil Engineering, Chungju National University)
  • 장창래 (충주대학교 토목공학과)
  • Received : 2010.08.18
  • Accepted : 2010.10.07
  • Published : 2010.10.31

Abstract

In this study, the adjustment processes of the disturbed channels by sand or gravel mining were investigated by a two dimensional numerical model in the generalized coordinate system. As a numerical scheme, the CIP (cubic interpolated pseudoparticle method) method was used to calculate the advection term in the flow field and central difference method was used to the diffusion term in it. The pit of the channel was partially filled with sediment at the toe of the pit upstream. As time increased, the headcut erosion upstream in the pit was decreased due to the sediment inflow. The almost inflow sediment upstream was trapped into the pit and the sediment deposit wedge migrated downstream in the pit with the steep submerged angle of repose. The numerical model was reproduced well the evolution processes of the channel. The mining pit migrated with speed as the channel was steep, and the numerical results were in overall agreement with the experimental results.

본 연구는 하천의 골재채취 혹은 하천준설로 인하여 교란된 하천의 적응과정을 하도의 평면변화에 적합하도록 일반좌표계 상에서 흐름 및 하상변동을 모의할 수 있는 2차원 수치모형을 이용하여 파악하였다. 수치해석 기법으로는 흐름의 운동량 방정식에서 이류항은 CIP (Cubic Interpolated Pseudoparticle)법을 적용하였으며, 확산항은 중앙차분법을 적용하였다. 하천준설 혹은 골재채취에 의해 형성된 웅덩이는 초기에 웅덩이 상류 지점에서 급격한 두부침식이 발생하였다. 시간이 증가하면서 웅덩이는 상류에서 공급되는 유사에 의하여 되메워지고, 일정한 안식각을 유지하면서 거의 균일한 속도로 이동하였다. 웅덩이 하류에서는 하상저하가 지속되고 있다. 수치모의 결과는 이러한 과정을 잘 모의하였다. 하상경사가 급할 경우에, 웅덩이의 변화에 대하여 되메워지는 시간이 짧고, 웅덩이의 이동속도가 빠른 것을 보여주고 있으며, 수치모의 결과는 실내실험 결과에 잘 일치하였다.

Keywords

References

  1. 장창래, 이광만, 이준열(2008), 하천준설에 의한 교란하천의 반응해석을 하상변동 연구(2차년도), 한국수자원공사 수자원연구원.
  2. 장창래, 정관수(2010). "준설하천의 웅덩이 적응에 관한 실험적 연구." 한국수자원학회논문집, 제43권, 제7호, pp. 657-666.
  3. Cao, Z., and Pender, G. (2004). "Numerical modelling of alluvial rivers subject to interactive sediment mining and feeding." Advances in Water Resources, Vol. 27, pp. 533-546. https://doi.org/10.1016/j.advwatres.2004.02.017
  4. Engelund, F. (1974). "Flow and bed topography in channel beds." J. Hydraul. Div., ASCE, Vol. 100, No. 11, pp. 1631-1648.
  5. Gill, M.A. (1994). "Hydrodynamics of mining pits in erodible bed under steady flow." J. Hydraul. Eng., ASCE, Vol. 120, No. 11, pp. 1337-1348. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:11(1337)
  6. Gob, F., Houbrechts, G., Hiver, M., and Petit, F. (2005). "River dredging, channel dynamics and bedload transport in an incised meandering river (the river Semois, Belgium)." River Res. Applic. Vol. 21, pp. 791-804. https://doi.org/10.1002/rra.883
  7. Jang, C.-L., and Shimizu, Y. (2005). "Numerical simulation of relatively wide, shallow channels with erodible banks." J. Hydraul. Eng., ASCE, Vol. 131, No. 7, pp. 565-575. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:7(565)
  8. Kishi, T., and Kuroki, M. (1973). "Bed form and flow resistance in alluvial rivers (I)." Research Report of Faculty of Engineering, Hokkaido Univ., Vol. 67, pp. 1-23.
  9. Kondolf, G.M. (1994). "Geomorphic and environmental effects of instream gravel minig." Landscape and Urban Planning, Vol. 28, pp. 225-243. https://doi.org/10.1016/0169-2046(94)90010-8
  10. Kondolf, G.M., Piegay, H., and Landon, N. (2002). "Channel response to increased and bedload supply from land use change: contrast between two catchments." Geomorphology, Vol. 45, pp. 35-51. https://doi.org/10.1016/S0169-555X(01)00188-X
  11. Lee, H.Y., Fu, D.T., and Song, M.H. (1993). "Migration of rectangular mining pit composed of uniform sediments." J. Hydraul. Eng., ASCE, Vol. 119, No. 1, pp. 64-80. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:1(64)
  12. Lee, H.Y., and Hwang, S.T. (1994). "Migration of backward-facing step." J. Hydraul. Eng., ASCE, Vol. 120, No. 6, pp. 693-705. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:6(693)
  13. Meyer-Peter, E., and Muller, R. (1948). "Formulas for bed-load transport." Proc. 2nd Congress, IAHR, Stockholm, Sweden, Vol. 2, No. 2, pp. 39-64.
  14. Rinald, M., Wyzga, B., and Surian, N. (2005). "Sediment mining in alluvial channels: Physical effects and management perspects." River Res. Applic., Vol. 21, pp. 805-828. https://doi.org/10.1002/rra.884
  15. Wu, W., and Wang, S.S.Y. (2008). "Simulation of morphological evolution near sediment mining pits using a 1-D mixed-regime flow and sediment transport model." World Environmental and Water Resources Congress 2008, pp. 1-10.
  16. van Rijn, L.C. (1996). "Sedimentation of dredged channels and trenches." Handbook of coastal and ocean engineering (ed. by Herbich, J.B.), pp. 611-650.
  17. Yabe, T., Ishikawa, T., Wang, P. Y., Aoki, T., Kadota, Y., and Ikeda, F. (1991). "A universal solver for hyperbolic equations by cubic-polynomial interpolation II. Two and three-dimensional solvers." Comput. Phys. Commum., Vol. 66, pp. 233-242. https://doi.org/10.1016/0010-4655(91)90072-S