• Title/Summary/Keyword: gravel

Search Result 807, Processing Time 0.028 seconds

Geo-educational Values of the Jebudo Geosite in the Hwaseong Geopark, Korea (화성 지질공원 제부도 지질명소의 지질교육적 가치)

  • Ha, Sujin;Chae, Yong-Un;Kang, Hee-Cheol;Kim, Jong-Sun;Park, Jeong-Woong;Shin, Seungwon;Lim, Hyoun Soo;Cho, Hyeongseong
    • Journal of the Korean earth science society
    • /
    • v.42 no.3
    • /
    • pp.311-324
    • /
    • 2021
  • Recently, ten geosites have been considered in Hwaseong for endorsement as national geoparks, including the Jebudo, Gojeongri Dinosaur Egg Fossils, and Ueumdo geosites. The Jebudo geosite in the southern part of the Seoul metropolitan area has great potential for development as a new geoscience educational site because it has geological, geographical (landscape), and ecological significance. In this study, we described the geological characteristics through field surveys in the Jebudo geosite. We evaluated its potential as a geo-education site based on comparative analysis with other geosites in Hwaseong Geopark. In addition, we reviewed the practical effect of field education at geosites on the essential concepts and critical competence-oriented education emphasized in the current 2015 revised science curriculum. The Jebudo Geosite is geologically diverse, with various metamorphic rocks belonging to the Precambrian Seosan Group, such as quartzite, schist, and phyllite. Various geological structures, such as clastic dikes, faults, joints, foliation, and schistosity have also been recorded. Moreover, coastal geological features have been observed, including depositional landforms (gravel and sand beaches, dunes, and mudflats), sedimentary structures (ripples), erosional landforms (sea cliffs, sea caves, and sea stacks), and sea parting. The Jebudo geosite has considerable value as a new geo-education site with geological and geomorphological distinction from the Gojeongri Dinosaur Egg Fossils and Ueumdo geosites. The Jebudo geosite also has opportunities for geo-education and geo-tourism, such as mudflat experiences and infrastructures, such as coastal trails and viewing points. This geosite can help develop diverse geo-education programs that improve key competencies in the science curriculum, such as critical thinking, inquiry, and problem-solving. Furthermore, by conducting optimized geo-education focused on the characteristics of each geosite, the following can be established: (1) the expansion of learning space from school to geopark, (2) the improvement of understanding of specific content elements and linkage between essential concepts, and (3) the extension of the education scope throughout the earth system. There will be positive impacts on communication, participation, and lifelong learning skills through geopark education.

The Topsoil Characteristics, and Estimation of Topsoil Organic Carbon Storage at Restoration Areas in Riparian Zones of the Han River (한강 수변구역 복원지의 표토 특성 및 유기탄소 저장량 추정)

  • Lee, Jong-Mun;Cho, Yong-Hyeon;Kim, Yoon-Ho;Park, Sung-Woo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.4
    • /
    • pp.12-23
    • /
    • 2019
  • This study was carried out to investigate and analyze the environmental characteristics of restoration areas in the riparian zones of the Han River, and to quantify the amount of topsoil organic carbon storage. As a result of investigation and analysis of 21 survey sites, the total number of species planted was found to be 17, and the mean number of species was $2.86{\pm}0.13$ species per site. At least one species and a maximum of 7 species were planted at each site. The mean diameter at breast height was $9.1{\pm}0.6cm$, the mean height was $6.2{\pm}0.3m$ and the root content in soil was $0.13{\pm}0.18g/cm^2$. As a result of the analysis of the soil characteristics, 6 out of 21 items, such as the bulk density, solid ratio, gravel ratio, soil hardness, sand content, and pH increased as the soil layer deepened. The topsoil organic carbon storage by layer was $11.54{\pm}1.08ton/ha$ at 0-10cm, $8.69{\pm}0.81ton/ha$ at 10-20cm, $7.97{\pm}0.79ton/ha$ at 20-30cm, and the total from 0 to 30cm was $28.21{\pm}7.31ton/ha$. The highest amount of topsoil organic carbon storage by land use in the past was $35.17{\pm}5.31ton/ha$ in agricultural lands, followed by $28.16{\pm}8.31ton/ha$ in residential areas, $21.87{\pm}9.05ton/ha$ in commercial areas, $19.23{\pm}12.48ton/ha$ in industrial areas, and $17.07{\pm}11.33ton/ha$ in the barren areas. The highest amount of topsoil organic carbon storage in the restored areas was $38.46{\pm}3.14ton/ha$ in 2006, followed by $28.57{\pm}7.84ton/ha$ in 2016, and $16.78{\pm}6.06ton/ha$ in 2011. The results of this study are expected to provide a basic database and evaluation criteria for enhancing the carbon abatement effects of the restoration sites in riparian zones in the future.

Potential Contamination Sources on Fresh Produce Associated with Food Safety

  • Choi, Jungmin;Lee, Sang In;Rackerby, Bryna;Moppert, Ian;McGorrin, Robert;Ha, Sang-Do;Park, Si Hong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • The health benefits associated with consumption of fresh produce have been clearly demonstrated and encouraged by international nutrition and health authorities. However, since fresh produce is usually minimally processed, increased consumption of fresh fruits and vegetables has also led to a simultaneous escalation of foodborne illness cases. According to the report by the World Health Organization (WHO), 1 in 10 people suffer from foodborne diseases and 420,000 die every year globally. In comparison to other processed foods, fresh produce can be easily contaminated by various routes at different points in the supply chain from farm to fork. This review is focused on the identification and characterization of possible sources of foodborne illnesses from chemical, biological, and physical hazards and the applicable methodologies to detect potential contaminants. Agro-chemicals (pesticides, fungicides and herbicides), natural toxins (mycotoxins and plant toxins), and heavy metals (mercury and cadmium) are the main sources of chemical hazards, which can be detected by several methods including chromatography and nano-techniques based on nanostructured materials such as noble metal nanoparticles (NMPs), quantum dots (QDs) and magnetic nanoparticles or nanotube. However, the diversity of chemical structures complicates the establishment of one standard method to differentiate the variety of chemical compounds. In addition, fresh fruits and vegetables contain high nutrient contents and moisture, which promote the growth of unwanted microorganisms including bacterial pathogens (Salmonella, E. coli O157: H7, Shigella, Listeria monocytogenes, and Bacillus cereus) and non-bacterial pathogens (norovirus and parasites). In order to detect specific pathogens in fresh produce, methods based on molecular biology such as PCR and immunology are commonly used. Finally, physical hazards including contamination by glass, metal, and gravel in food can cause serious injuries to customers. In order to decrease physical hazards, vision systems such as X-ray inspection have been adopted to detect physical contaminants in food, while exceptional handling skills by food production employees are required to prevent additional contamination.

Geosites, Geoheritages and Geotrails of the Hwaseong Geopark, the Candidate for Korean National Geopark (화성 국가지질공원 후보지의 지질명소, 지질유산 그리고 지오트레일)

  • Cho, Hyeongseong;Shin, Seungwon;Kang, Hee-Cheol;Lim, Hyoun Soo;Chae, Yong-Un;Park, Jeong-Woong;Kim, Jong-Sun;Kim, Hyeong Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.195-215
    • /
    • 2019
  • Geopark is a new system for development of the local economy through conservation, education, and tourism that is an area of scientific importance for the earth sciences and that has outstanding scenic values. The Hwaseong Geopark, the candidate for Korean National Geopark is composed of 10 geosites: Gojeongri dinosaur egg fossils, Ueumdo, Eoseom, Ddakseom, Goryeom, Jebudo, Baengmiri Coast, Gungpyeonhang, Ippado and Gukwado geosites. In this study, geosites, geoheritages, and geotrails of the Hwaseong Geopark were described in detail, and the value and significane as a geopark were also discussed. The geology of the Hwaseong Geopark area belonging to the Gyeonggi Massif consists of the Precambrian metamorphic and meta-sedimentary rocks, Paleozoic sedimentary and metamorphic rocks, Mesozoic igneous and sedimentary rocks, and Quaternary deposits, indicating high geodiversity. The Gojeongri Dinosaur Egg Fossils geosite, designated as a natural monument, has a geotrail including dinosaur egg nest fossils, burrows, tafoni, fault and drag fold, cross-bedding. Furthermore, a variety of infrastructures such as eco-trail deck, visitor center are well-established in the geosite. In the Ueumdo geosite, there are various metamorphic rocks (gneiss, schist, and phyllite) and geological structures (fold, fault, joint, dike, and vein), thus it has a high educational value. The Eoseom geosite has high academic value because of the orbicular texture found in metamorphic rocks. Also, various volcanic and sedimentary rocks belonging to the Cretaceous Tando Basin can be observed in the Ddakseom and Goryeom geosites. In the Jebudo, Baengmiri Coast, and Gungpyeonghang geosites, a variety of coastal landforms (tidal flat, seastacks, sand and gravel beach, and coastal dunes), metamorphic rocks and geological structures, such as clastic dikes and quartz veins can be observed, and they also provide various programs including mudflat experience to visitors. Ippado and Gukwado geosites have typical large-scale fold structures, and unique coastal erosional features and various Paleozoic schists can be observed. The Hwaseong Geopark consists of outstanding geosites with high geodiversity and academic values, and it also has geotrails that combine geology, geomorphology, landscape and ecology with infrastructures and various education and experience programs. Therefore, the Hwaseong Geopark is expected to serve as a great National Geopark representing the western Gyeonggi Province, Korea.

A Diagnostic Analysis on the Conservation Status for the Maintenance of the Front Wall of Jungjeongdang Area of Dodong-Seowon (도동서원 중정당 전면 담장의 보수를 위한 진단학적 보존 상태 분석)

  • Kim, Kyu-Yeon
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.37 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • This study was conducted to analyze the conservation status by diagnostical methology for the front wall of Jungjeongdang area of Dodong-Seowon. The study was carried out as photogrammetry and mapping - investigation of materials and conservation status - analysis and evaluation of conservation status. The results are as follows. First, in the case of photogrammetry, each photograph was took in superposition, and the distortions of the photographs were corrected and synthesized. Based on this, actual survey drawings of the wall were prepared. Second, in case of material and conservation status, the wall is in the form of Wapyeondam and the material of the head part are tile, mud and lime, and the material of the body part are mud and tile. The mud was mixed with gravel, sand and straw. At the base part, amorphous natural stones and mud were used. The remarkable damage that appears on the wall is erosion of the base part, and some disintegration appears in the body part. There is a biological patina on the head and the base, and vegetation such as lichen is concentrated on the partial body. There was superficial deposit in the head part, and some tiles were broken or lost. Deep fissures are intensively located in some part of the eastern wall. Third, in the case of analysis and evaluation of the conservation status, it is considered that by the erosion of the foundation part and the disintegration of the body part, there is a possibility that physical damage will continue to be applied to the wall, so immediate action is necessary. The distribution of biological patina and vegetation does not appear to cause great problems in the wall, but it is necessary to reduce it in view of aesthetic problems. A cracked or missing tile would need to be replaced, and deep cracks in the eastern wall appear to have been caused by subsidence, and reinforcement of the underground is necessary to prevent further damage.

A Study on the Application of Physical Soil Washing Technology at Lead-contaminated Shooting Range in a Closed Military Shooting Range Area (폐 공용화기사격장 내 납오염 사격장 군부지의 물리적 토양세척정화기술 적용성 연구)

  • Jung, Jaeyun;Jang, Yunyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.5
    • /
    • pp.492-506
    • /
    • 2019
  • Heavy metal contaminants in the shooting range are mostly present in a warhead circle or a metal fragment present as a particle, these fine metal particles are weathered for a long period of time is very likely that the surface is present as an oxide or carbon oxide. In particular, lead which is a representative contaminant in the shooting range soil, is present as more fine particles because it increases the softness and is stretched well. Therefore, by physical washing experiment, we conducted a degree analysis, concentration of heavy metals by cubic diameter, composition analysis of metallic substances, and assessment of applicability of gravity, magnetism and floating selection. The experimental results FESEM analysis and the measurement results lead to the micro-balance was confirmed thatthe weight goes outless than the soil ofthe same size in a thinly sliced and side-shaped structure according to the dull characteristics it was confirmed that the high specific gravity applicability. In addition, the remediation efficiency evaluation results using a hydrocyclone applied to this showed a cumulative remediation efficiency of 71%,twice 80%, 3 times 91%. On the other hand, magnetic sifting showed a low efficiency of 17%,floating selection -35mesh (0.5mm)target soil showed a relatively high efficiency to 39% -10mesh (2mm) efficiency was only 16%. The target treatment diameter of soil washing should be 2mm to 0.075mm, which is applied to the actual equipment by adding an additional input classification, which would require management as additional installation costs and processes are constructed. As a result, it is found that the soilremediation of shooting range can be separately according to the size of the warhead. The size is larger than the gravel diameter to most 5.56mm, so it is possible to select a specific gravity using a high gravity. However, the contaminants present in the metal fragments were found to be processed by separating using a hydrocyclone of the soil washing according to the weight is less than the soil of the same particle size in a thinly fragmented structure.

Diagnosis of Real Condition and Distribution of Protected Trees in Changwon-si, Korea (창원시 보호수의 분포현황과 실태진단)

  • You, Ju-Han;Park, Kyung-Hun;Lee, Young-Han
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.29 no.1
    • /
    • pp.59-70
    • /
    • 2011
  • The purpose of this study is to present raw data to systematically and rationally manage the protected trees located in Changwon-si, Korea. This study investigated about the present condition and the information of location, individual, management, health and soil. The results are as follows. The protected trees were located in 26 spots, and species of trees were 9 taxa; Zelkova serrata, Celtis sinensis, Aphananthe aspera, Ginkgo biloba, Carpinus tschonoskii, Pinus densiflora for. multicaulis, Quercus variabilis, Pinus densiflora and Salix glandulosa. In protected tree types, shade trees were the most, and the majority of theirs were 200 years or more in age. The range of altitude was 14~173m, and the number of trees located in flat fields was the most. For location types, village and field and mountain were presented in the order and, in land use, land for building was the most. The range of height was 8.0~30.0m, 0.6~5.1m in crown height, 240~700cm in diameter of breast and 210~800cm in diameter of root. In case of crown area, Zelkova serrata of No.5 was most large. The status boards were mostly installed except No.23 and No.26. The sites with fence were 9 spots, and the site with stonework were 14 spots. The sites with the support beam were 5 spots, and most sites were not covered up with soil. The materials of bottom were soil, gravel and vegetation in the order. The range of withering branch rate was 0~40%, and peeled bark rate was 0~60%. The sites made holes were 23 spots, and the hole size of Aphananthe aspera of No.12 was the largest. The sites disturbed by human trampling were 7 spots, the sites by disease and insects of 2 spots, the sites by injury of 23 spots and the sites by exposed roots of 13 spots. In the results of soil analysis, there showed that acidity was pH 4.5~8.0, organic matter content of 3.5~69.8g/kg, electrical conductivity(EC) of 0.11~2.87dS/m, available $P_2O_5$ of 3.0~490.6mg/kg, exchangeable K of 0.10~1.05cmol+/kg, exchangeable Ca of 1.41~16.45cmol+/kg, exchangeable Mg of 0.37~1.96cmol+/kg, exchangeable Na of 0.25~2.41cmol+/kg and cation exchange capacity(C.E.C) of 8.35~26.55cmol+/kg.

Estimation of ecological flow and fish habitats for Andong Dam downstream reach using 1-D and 2-D physical habitat models (1차원 및 2차원 물리서식처 모형을 활용한 안동댐 하류 하천의 환경생태유량 및 어류서식처 추정)

  • Kim, Yongwon;Lee, Jiwan;Woo, Soyoung;Kim, Soohong;Lee, Jongjin;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1041-1052
    • /
    • 2022
  • This study is to estimate the optimal ecological flow and analysis the spatial distribution of fish habitat for Andong dam downstream reach (4,565.7 km2) using PHABSIM (Physical Habiat Simulation System) and River2D. To establish habitat models, the cross-section informations and hydraulic input data were collected uisng the Nakdong river basic plan report. The establishment range of PHABSIM was set up about 410.0 m from Gudam streamflow gauging station (GD) and about 6.0 km including GD for River2D. To select representative fish species and construct HSI (Habitat Suitability Index), the fish survey was performed at Pungji bridge where showed well the physical characteristics of target stream located downstream of GD. As a result of the fish survey, Zacco platypus was showed highly relative abundance resulting in selecting as the representative fish species, and HSI was constructed using physical habitat characteristics of the Zacco platypus. The optimal range of HSI was 0.3~0.5 m/s at the velocity suitability index, 0.4~0.6 m at the depth suitability index, and the substrate was sand to fine gravel. As a result of estimating the optimal ecological flow by applying HSI to PHABSIM, the optimal ecological flow for target stream was 20.0 m3/sec. As a result of analysis two-dimensional spatial analysis of fish habitat using River2D, WUA (Weighted Usable Area) was estimated 107,392.0 m2/1000 m under the ecological flow condition and it showed the fish habitat was secured throughout the target stream compared with Q355 condition.

A Study on the Variation of River Vegetation by Seasonal Precipitation Patterns (계절별 강수 패턴에 따른 하천 식생 변화 양상 연구)

  • Hee-Jeong JEONG;Seung-Yeon YU;Eun-Ji CHO;Yong-Joo JI;Yong-Suk KIM;Hyun-Kyung OH;Jong-Sung LEE;Hyun-Do JANG;Dong-Gil CHO
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.2
    • /
    • pp.1-19
    • /
    • 2023
  • In Korea, excessive vegetation in rivers made up of sand and gravel is emerging as a nationwide problem, which is attributed to increased spring precipitation and decreased annual precipitation. Therefore, this study was conducted for the purpose of identifying the effect of changes in precipitation patterns on river vegetation in Namcheon, Gyeongju, and analyzing the area of vegetation and ecological characteristics. As a result of the study, the amount of monthly precipitation in the summer of Namcheon decreased after 2007, and the area of vegetation increased continuously compared to the area of the sandbank. The proportion of naturalized plants increased steadily when precipitation continued to a level that did not cause flooding, but the area occupied by naturalized plants was small. Also, when the water level is maintained, the species diversity is low due to the dominance of a single species, and the dominant species was mainly native plants. Dominance of native plants inhibited the growth of naturalized plants, but the vegetation area increased even more. Therefore, it is necessary to manage the spread of vegetation itself rather than the division of native plants and naturalized plants in order to eliminate the active growth and prosperity of river vegetation. High water levels and continuous flooding caused by torrential rains in summer disturbed the plant communities, and vegetation formed afterwards was mainly native plants. Such flooding in river ecosystems is a positive factor for the emergence of native plants and over-formed vegetation communities, so it should be considered when establishing a vegetation management plan.

Comprehensive Review on the Implications of Extreme Weather Characteristics to Stormwater Nature-based Solutions (자연기반해법을 적용한 그린인프라 시설의 극한기후 영향 사례분석)

  • Miguel Enrico L. Robles;Franz Kevin F. Geronimo;Chiny C. Vispo;Haque Md Tashdedul;Minsu Jeon;Lee-Hyung Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.353-365
    • /
    • 2023
  • The effects of climate change on green infrastructure and environmental media remain uncertain and context-specific despite numerous climate projections globally. In this study, the extreme weather conditions in seven major cities in South Korea were characterized through statistical analysis of 20-year daily meteorological data extracted fro m the Korea Meteorological Administration (KMA). Additionally, the impacts of extreme weather on Nature-based Solutions (NbS) were determined through a comprehensive review. The results of the statistical analysis and comprehensive review revealed the studied cities are potentially vulnerable to varying extreme weather conditions, depending on geographic location, surface imperviousness, and local weather patterns. Temperature extremes were seen as potential threats to the resilience of NbS in Seoul, as both the highest maximum and lowest minimum temperatures were observed in the mentioned city. Moreover, extreme values for precipitation and maximum wind speed were observed in cities from the southern part of South Korea, particularly Busan, Ulsan, and Jeju. It was also found that extremely low temperatures induce the most impact on the resilience of NbS and environmental media. Extremely cold conditions were identified to reduce the pollutant removal efficiency of biochar, sand, gravel, and woodchip, as well as the nutrient uptake capabilities of constructed wetlands (CWs). In response to the negative impacts of extreme weather on the effectiveness of NbS, several adaptation strategies, such as the addition of shading and insulation systems, were also identified in this study. The results of this study are seen as beneficial to improving the resilience of NbS in South Korea and other locations with similar climate characteristics.