• 제목/요약/키워드: grasping force

검색결과 108건 처리시간 0.026초

Research of Stable Grasping for Handling Tasks in Field Robot

  • Park, Kyung-Taek;Kim, Sung-Su;Yang, Soon-Yong;Lee, Byung-Rong;Ahn, Kyoung-Kwan;Han, Hyun-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.132.6-132
    • /
    • 2001
  • This paper aims to derive a mathematical model of the dynamics of handling tasks in field robot which stable grasping and manipulates a rigid object with some dexterity. Firstly, a set of differential equation describing dynamics of the manipulators and object together with geometric constraint of tight area-contacts is formulated by Lagrange equation. Secondly, problems of controlling both the internal force and the rotation angle of the grasped object under the constraints of area-contacts of tight area-contacts are discussed. The effect of geometric constraints of area-contacts on motion of the overall system is analyzed and a method of computer simulation for overall system of differential-algebraic equations is presented. Thirdly, simulation results are shown and the effects of geometric constraints of area-contact is discussed.

  • PDF

Analysis of Internal Loading at Multiple Robotic Systems

  • Chung Jae Heon;Yi Byung-Ju;Kim Whee Kuk
    • Journal of Mechanical Science and Technology
    • /
    • 제19권8호
    • /
    • pp.1554-1567
    • /
    • 2005
  • When multiple robotics systems with several sub-chains grasp a common object, the inherent force redundancy provides a chance of utilizing internal loading. Analysis of grasping space based internal loading is proposed in this work since this method facilitates understanding the physical meaning of internal loadings in some applications, as compared to usual operational space based approach. Investigation of the internal loading for a triple manipulator has been few as ,compared to a dual manipulator. In this paper, types of the internal loading for dual and triple manipulator systems are investigated by using the reduced row echelon method to analyze the null space of those systems. No internal loading condition is derived and several load distribution schemes are compared through simulation. Furthermore, it is shown that the proposed scheme based on grasping space is applicable to analysis of special cases such as three-fingered and three-legged robots having a point contact with the grasped object or ground.

복강경 수술용 로봇 인스트루먼트의 간접적 작동력 측정법에 관한 연구 (Study for the Indirect Measuring Method of Operational Force in Surgical Robot Instrument)

  • 김지언;이민철;이태경;최승욱;박민규
    • 제어로봇시스템학회논문지
    • /
    • 제16권9호
    • /
    • pp.840-845
    • /
    • 2010
  • This paper proposes the method indirectly measuring the operating force of the end-effect tip of surgical robot instrument which conducts the surgical operation in the body on behalf of the surgeon's hand. Due to the size and safety obligation to the surgical robot instrument, it is difficult to measure the operation force of its tip like grasping force. However the instrument is driven by cable-pulley torque transmission mechanism and when some force is occurred at the tip, then the reaction force appears on the cable as additional tension. Based on this phenomenon, this paper proposes a method to estimate the operating force from measuring reaction force against the driving motor by using a loadcell. And it induces mathematical equation to calculate the force from loadcell by approaching the modulus of elasticity to high order polynomial. And this paper proves the validity of proposed mechanism by experimental test.

내부힘을 고려한 두 로봇의 최적 부하 분배 문제의 기하학적 접근 (Geometrical approach to optimal load distribution for two cooperation robots considering internal force)

  • 권웅;최명환;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.337-342
    • /
    • 1992
  • The load distribution problem of two cooperating robots grasping one object is studied. The optimal joint torque needed for the desired motion is obtained by using a new objective function. A new objective function is defined for the minimization of joint torque effort and internal force. The optimal solution can be found by geometrical approach and analysis using the concept of force ellipsoid. Simulation results are presented with 6DOF PUMA robots.

  • PDF

건설업 임금 변동 분석을 위한 건설업 임금실태 조사와 사업체노동력조사 비교 (Comparative study of the wage survey in Construction sector and the Labour force survey for analysis of wage variation in construction industry)

  • 이주현;백승호
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.281-282
    • /
    • 2021
  • The construction industry is known for a large number of workers and its high employment inducing effect. Therefore, the survey on the wages of the construction industry is an important basic data for grasping fluctuations according to the survey cycle and establishing future policies, and it is a statistical data having a large impact on related industries. In this study, we intend to conduct a comparative analysis of 'the wage survey in Construction sector,' which is the representative nationally approved statistics that surveys the current construction industry wages, and 'the labor force survey of business establishment'.

  • PDF

힘과 위치를 동시에 고려한 양팔 물체 조작 솜씨의 모방학습 (Imitation Learning of Bimanual Manipulation Skills Considering Both Position and Force Trajectory)

  • 권우영;하대근;서일홍
    • 로봇학회논문지
    • /
    • 제8권1호
    • /
    • pp.20-28
    • /
    • 2013
  • Large workspace and strong grasping force are required when a robot manipulates big and/or heavy objects. In that situation, bimanual manipulation is more useful than unimanual manipulation. However, the control of both hands to manipulate an object requires a more complex model compared to unimanual manipulation. Learning by human demonstration is a useful technique for a robot to learn a model. In this paper, we propose an imitation learning method of bimanual object manipulation by human demonstrations. For robust imitation of bimanual object manipulation, movement trajectories of two hands are encoded as a movement trajectory of the object and a force trajectory to grasp the object. The movement trajectory of the object is modeled by using the framework of dynamic movement primitives, which represent demonstrated movements with a set of goal-directed dynamic equations. The force trajectory to grasp an object is also modeled as a dynamic equation with an adjustable force term. These equations have an adjustable force term, where locally weighted regression and multiple linear regression methods are employed, to imitate complex non-linear movements of human demonstrations. In order to show the effectiveness our proposed method, a movement skill of pick-and-place in simulation environment is shown.

근력-기민성 보완: 여성 노인의 오른손과 왼손 비교 (Strength-dexterity Complementariness: Comparison between Left and Right Hands in Older Female Adults)

  • Park, Yang Sun;Park, Da Won;Koh, Kyung;Kwon, Hyun Joon;Shim, Jae Kun
    • 한국운동역학회지
    • /
    • 제31권4호
    • /
    • pp.227-233
    • /
    • 2021
  • Objective: The purpose of this study was to in this study. The maximum grip force of the elderly hand was measured using a custom-designed grasping apparatus mounted with five three-component force transducers. The Jebsen-Tayler hand function test and Purdue Pegboard test were performed to evaluate the dexterity of the hand. Method: Twenty-six elderly women participated in the left hand between the maximum grip force and the Jebsen-Taylor hand function test results (r=-.513, p=.007). A significant correlation was also shown in the hand maximum grip force and the hand Purdue Pegboard results (r=.514, p=.007). However, no significant correlation was found in the right hand. Results: We found a significant correlation investigate the relationship between hand grip strength and hand dexterity in the elderly. Conclusion: Our findings in the current study support the theory of 'Strength-dexterity complementariness' which states that improvement in dexterity is associated with the grip force strength.

운동감의 정량화를 위한 감성 공학적 기법 개발

  • 신동윤;송재복;김용일
    • 대한인간공학회:학술대회논문집
    • /
    • 대한인간공학회 1997년도 추계학술대회논문집
    • /
    • pp.359-365
    • /
    • 1997
  • When grasping a movable object or making an object move, humans feel kinesthetic sense. Kinesthetic sense is the human sense that the human feels in response to the motion acted on the human. The objecive of the paper is tranforming the kinesthetic sense to quantitized data that is useful from the viewpoint of engineering. To provide various motion patterns, 2-dimensional motion generator was built using 2-axis linear motors. Active stiffness and active damping were implemented by means of current control and force feedback techniques. Based on Taguchi method, the most dominant factors to affect kinesthetic sense were investigated. Also, some functions adequate to quantize the kinesthetic sense were found.

  • PDF

Design and Control of a Dexterous Multi-fingered Robot Hand

  • Chung, Woo-Jin;Lee, Hyung-Jin;Kim, Mun-Sang;Lee, Chong-Won;Kang, Bong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.83.1-83
    • /
    • 2001
  • This paper presents a three-fingered robot hand, called the KIST hand, Which have one active joint and one passive joint. The thumb is fixed on the palm, and the index and the middle take lateral motions symmetrically. A mechanical clutch and an embedded force sensor, attached on the distal link of the fingers, enable the KIST hand to perform human-like functions. A result of experiment shows reliable grasping performance of the hand which maintain stable grasp under disturbances.

  • PDF

근전의수의 제어시스템에 관한 연구 (A Study on the Control System of Myoelectric Hand Prosthesis)

  • 최기원;추준욱;최규하
    • 전기학회논문지
    • /
    • 제56권1호
    • /
    • pp.214-221
    • /
    • 2007
  • This paper presents a myoelectric hand prosthesis(MHP) with two degree of freedom(2-DOF), which consists of a mechanical hand, a surface myoelectric sensor(SMES) for measuring myoelectric signal, a control system and a charging battery. The actuation for the 2-DOF hand functions such as grasping and wrist rotation was performed by two DC-motors, and controlled by myoelectric signal measured from the residual forearm muscle. The grip force of the MHP was automatically changed by a mechanical automatic speed reducer mounted on the hand. The skin interface of SMES was composed of the electrodes using the SUS440 metal in order to endure a wet condition due to the sweat. The sensor was embedded with a amplifier and a filter circuit for rejecting the offset voltage caused by power line noises. The control system was composed of the grip force sensor, the slip sensor, and the two controllers. The two controllers were made of a RISC-type microprocessor, and its software was executed on a real-time kernel. The control system used Force Sensing Resistors, FSR, as slip pick-ups at the fingertip of a thumb and the grip force information was obtained from a strain-gauge on the lever of the MHP. The experimental results were showed that the proposed control system is feasible for the MHP.