• 제목/요약/키워드: graphite shape

검색결과 102건 처리시간 0.026초

이방성(異方性) 자원광물(資源鑛物)의 물성(物性) 및 광학적(光學的) 대칭성(對稱性) 연구(硏究) (Physical Properties and Optical Symmetry of Some Bireflecting Ore Mineral Species)

  • 소칠섭;도성재;이경용
    • 자원환경지질
    • /
    • 제18권4호
    • /
    • pp.343-355
    • /
    • 1985
  • 본 논문에서는 세계적으로 유명한 대규모의 황화철상(黃化鐵床)에서 산출되는 7종의 이방성(異方性) 광석광물(鑛石鑛物)을 대상으로 물리적(物理的) 특성(特性)을 실험 연구하고, 광물(鑛物) 고유의 타광학성(他光學性), 결정방향(結晶方向)과의 상관 관계를 밝히며, 금속자원 광물의 감정(鑑定)을 위한 자료를 제시하고자 시도되었다. 연구대상 이방성(異方性) 광물(鑛物)(covellite, graphite)은 광물상호간의 white light color의 차이 뿐아니라 동종광물(同種鑛物)내부의 두 편광(偏光)(상광선(常光線), 이상광선(異常光線))의 방향에 따라 동일한 형태이나 큰 정량적 차이(R=약 10%)를 보여주는 spectral profile을 갖는다. 결정방향(結晶方向)에 따라 고찰된 이방성(異方性) 광물(鑛物)(enargite, famatinite)의 반사력(反射力)은 벽개면에 평행한 면에서 항상 높은 값(R=약 5%)을 갖는다. 측정 반사력(反射力)을 이용하여 규명된 연구 광물종의 광학적(光學的) 대칭성(對稱性)은 covellite가 일륜성(一輪性)(+), graphite는 일축성(一軸性)(-)이고, enargite와 famatinite는 이축성(二軸性)(+)이며, 부반사력(復反射力)이 낮은 gratonite의 경우는 결정이 불가능하였다. 표준하중별로 실시된 휘경도(徽硬度)실험에서 이방성광물(異方性鑛物)(enargite, famatinite)의 결정방향은 큰 영향을 미치는데, 즉 벽개면에 평행한 면에서 항상 높은 (HV=> $200kg/mm^2$) 휘경도(徽硬度)값을 보여준다. 모든 실험광물이 각각 특징적인 indentation의 형태를 갖음은 징경도(徵硬度)와 함께 광물감정(鑛物鑑定)에 유용할 것이다. 실험광물이 최소하중에서 항상 불규칙한 휘경도(徽硬度)값을 갖는 것은 관찰에서 기인되는 측정오차로 사료된다. 휘경도(徽硬度)-반사력(反射力)의 상관 관계를 이용한 시험광물의 분류는 Gray-Millman(1962)의 실험결과와 일치된다. 한편 반사도(反射度)의 과장별 측정오차와 그의 제거 방안이 논의되었다.

  • PDF

건축물 축열성능 향상을 위한 Octadecane/xGnP SSPCM 제조 및 열적성능 분석 (Preparation and Thermal Properties of Octadecane/xGnP Shape-Stabilized Phase Change Materials to Improve the Heat Storage Performance of Buildings)

  • 김석환;정수광;이정훈;김수민
    • 설비공학논문집
    • /
    • 제25권3호
    • /
    • pp.126-130
    • /
    • 2013
  • In this study, a shape-stabilized phase change material (SSPCM) was prepared by octadecane and exfoliated graphite nanoplate (xGnP) in a vacuum, to improve thermal storage performance. The octadecane as an organic phase change material (PCM) is very stable against phase separation of PCM, and has the proper temperature range for thermal comfort in the building; and the xGnP is a porous carbon nano-material. Scanning electron microscope (SEM) and Fourier transformation infrared spectrophotometer (FT-IR) were used to confirm the chemical and physical stability of the Ocatadecane/xGnP SSPCM. In addition, thermal properties were determined by Deferential scanning calorimeter (DSC), and Thermogravimetric analysis (TGA). The specific heat of Octadecane/xGnP SSPCM was $14.1J/g{\cdot}K$ at $31.3^{\circ}C$. The melting temperature ranges of melting and freezing were found to be $26{\sim}35^{\circ}C$ and $26{\sim}19^{\circ}C$, respectively. At this time, the latent heats of melting and freezing were 110.9 J/g and 104.5 J/g, respectively. The Octadecane was impregnated into xGnP by as much as about 56.0% of the Octadecane/xGnP SSPCM's mass fraction.

DC-ESR법(去)을 이용한 타이타늄 스크랩의 재용융(再熔融)에 관한 연구(硏究) (Study on the Remelting of Titanium Scrap by DC-ESR Process)

  • 서영득;이호성;손호상
    • 자원리싸이클링
    • /
    • 제16권4호
    • /
    • pp.33-39
    • /
    • 2007
  • 직류 ESR(Electro Slag Remelting)장치를 이용하여 타이타늄 스크랩의 재용해 및 정련에 관한 기초연구를 수행하였다. 비소모성 양극으로는 흑연봉을, 슬래그로는 $CaF_2-TiO_2$계를 사용하였다. 재용해한 타이타늄 잉곳의 형상 및 산소 함량에 미치는 슬래그 조성의 영향을 검토하였다. $CaF_2-TiO_2$계 슬래그에서는 잉곳 내부에 슬래그의 혼입이 없는 매우 양호한 형상의 타이타늄 잉곳이 형성되었으며, 산소 함량도 타이타늄스크랩보다 낮은 값을 나타내었다. $CaF_2-TiO_2$계 슬래그에 CaO를 첨가한 경우 잉곳 내부에 슬래그가 혼입되었으며, 산소 농도도 Ti 스크랩 보다 높은 값을 나타내었다.

연질 Cu 분말-가스분무 Ni계 벌크 비정질 복합분말의 방전플라즈마 소결에 관한 연구 (Spark Plasma Sintering of the Ductile Cu-Gas-atomized Ni Bulk Metallic Glass Composite Powders)

  • 김진천;김용진;김병기;김지순
    • 한국분말재료학회지
    • /
    • 제13권5호
    • /
    • pp.351-359
    • /
    • 2006
  • Ni based($Ni_{57}Zr_{20}Ti_{18}Si_2Sn_3$) bulk metallic glass(BMG) powders were produced by a gas atomization process, and ductile Cu powders were mixed using a spray drying process. The Ni-based amorphous powder and Cu mixed Ni composite powders were compacted by a spark plasma sintering (SPS) processes into cylindrical shape. The relative density varied with the used SPS mold materials such as graphite, hardened steel and WC-Co hard metal. The relative density increased from 87% to 98% when the sintering temperature increased up to $460^{\circ}C$ in the WC-Co hard metal mold.

Nickel Phosphide Electroless Coating on Cellulose Paper for Lithium Battery Anode

  • Kang, Hyeong-Ku;Shin, Heon-Cheol
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권2호
    • /
    • pp.155-164
    • /
    • 2020
  • Here we report our preliminary results about nickel phosphide (Ni-P) electroless coating on the surface of cellulose paper (CP) and its feasibility as the anode for lithium (Li) batteries. In particular, CP can act as a flexible skeleton to maintain the mechanical structure, and the Ni-P film can play the roles of both the anode substrate and the active material in Li batteries. Ni-P films with different P contents were plated uniformly and compactly on the microfiber strands of CP. When they were tested as the anode for Li battery, their theoretical capacity per physical area was comparable to or higher than hypothetical pure graphite and P film electrodes having the same thickness. After the large irreversible capacity loss in the first charge/discharge process, the samples showed relatively reversible charge/discharge characteristics. All samples showed no separation of the plating layer and no detectable micro-cracks after cycling. When the charge cut-off voltage was adjusted, their capacity retention could be improved significantly. The electrochemical result was just about the same before and after mechanical bending with respect to the overall shape of voltage curve and capacity.

Study on the Oil Resistance, Morphological and Dynamic Mechanical Properties, Flame Retardance of Ethylene Vinyl Acetate Copolymer and Ethylene Propylene Rubber Compounds

  • Sung, Il Kyung;Lee, Won Ki;Park, Chan Young
    • Elastomers and Composites
    • /
    • 제52권1호
    • /
    • pp.27-34
    • /
    • 2017
  • In this experiment, blends of ethylene vinyl acetate rubber (EVM) with a vinyl acetate (VA) content greater than 40 wt% and ethylene propylene rubber (EPM) were prepared by mechanical mixing; a number of parameters of the blends, including oil resistance, morphological and dynamic mechanical properties and flame retardancy, were subsequently measured. In the $100^{\circ}C$ oil resistance test, both the ammonium polyphosphate/dipentaerythritol/expandable graphite (APP/DPER/EG) and aluminum hydroxide (ATH) flame retardant systems showed an increase in volume change with increasing EPM content. For the ATH system, the dispersion shape was coarse and aggregation was observed. The results of a dynamic mechanical test showed slightly higher E' and E'' for the APP/DPER/EG flame retardant system when compared to the single ATH system. For both the APP/DPER/EG and ATH systems, the limited oxygen index (LOI) tests performed at increasing content of EPM showed a LOI value higher than 30, indicating excellent flame resistance.

적층형 셀과 아연도금층을 이용한 고온고압 합성다이아몬드의 압력변화에 따른 물성 연구 (Property of the HPHT Diamonds Using Stack Cell and Zn Coating with Pressure)

  • 신운;송오성
    • 한국세라믹학회지
    • /
    • 제49권2호
    • /
    • pp.167-172
    • /
    • 2012
  • Fine diamond powders are synthesized with a 420 ${\phi}$ cubic press and stack-cell composed of Kovar ($Fe_{54}Ni_{29}Co_{17}$) (or Kovar+7 ${\mu}m$-thick Zn electroplated) alloy and graphite disks. The high pressure high temperature (HPHT) process condition was executed at $1500^{\circ}C$ for 280 seconds by varying the nominal pressure of 5.7~10.6 GPa. The density of formation, size, shape, and phase of diamonds are determined by optical microscopy, field emission scanning electron microscopy, thermal gravimetric analysis-differential thermal ammnlysis (TGA-DTA), X-ray diffraction (XRD), and micro-Raman spectroscopy. Through the microscopy analyses, we found that 1.5 ${\mu}m$ super-fine tetrahedral diamonds were synthesized for Zn coated Kovar cell with whole range of pressure while ~3 ${\mu}m$ super-fine diamond for conventional Kovar cell with < 10.6 GPa. Based on $750^{\circ}C$ exothermic reaction of diamonds in TGA-DTA, and characteristic peaks of the diamonds in XRD and micro-Raman analysis, we could confirm that the diamonds were successfully formed with the whole pressure range in this research. Finally, we propose a new process for super-fine diamonds by lowering the pressure condition and employing Zn electroplated Kovar disks.

탄탈륨 및 탄탈륨-텅스텐 합금 분말의 소결성 및 미세조직 연구 (Sintering Behavior and Microstructures of Tantalum and Tantalum-Tungsten Alloys Powders)

  • 김영무;양성호;이성;이성호;노준웅
    • 한국분말재료학회지
    • /
    • 제27권5호
    • /
    • pp.373-380
    • /
    • 2020
  • The purpose of this study is to investigate the densification behavior and the corresponding microstructural evolution of tantalum and tantalum-tungsten alloy powders for explosively formed liners. The inherent inhomogeneous microstructures of tantalum manufactured by an ingot metallurgy might degrade the capability of the warhead. Therefore, to overcome such drawbacks, powder metallurgy was incorporated into the near-net shape process in this study. Spark plasma-sintered tantalum and its alloys with finer particle sizes exhibited higher densities and lower grain sizes. However, they were contaminated from the graphite mold during sintering. Higher compaction pressures in die and isostatic compaction techniques also enhanced the sinterability of the tantalum powders; however, a full densification could not be achieved. On the other hand, the powders exhibited full densification after being subjected to hot isostatic pressing over two times. Consequently, it was found that the hot isostatic-pressed tantalum might exhibit a lower grain size and a higher density as compared to those obtained in previous studies.

구상흑연주철(球狀黑鉛鑄鐵)의 혼합조직(混合組織) 및 강인성(强靭性)에 미치는 합금원소(合金元素)와 특수열처리(特殊熱處理)의 영향(影響) (Effects of the Alloying Elements and Special Heat Treatment on the Multi-phase (Ferrite-Bainite-Martensite), Strength and Toughness in Ductile Cast Iron)

  • 김석원;이의권;심재환
    • 한국주조공학회지
    • /
    • 제13권5호
    • /
    • pp.432-440
    • /
    • 1993
  • Ductile cast iron has a good ductility and toughness than those of gray cast iron, because the shape of graphite is spheroidal. Also, it has been reported that, additional strengthening and toughening of the ductile cast iron can be obtainded from the proper combination of matrix structures by the heat treatment and addition of alloying elements. In this study the effect of special heat treatment and addition of alloying elements(Ni, Mo) on the multi-phase(ferrite-bainite-martensite) structures, strength and toughness of ductile cast iron were studied systematically. In water quenching from $770^{\circ}C$, the martensite volume(%) increased, but the ferrite volume(%) decreased with increment of Ni content. In as cast, pearlite volume(%) and hardness increased with increment of Mo and Ni contents. And with the increment of the destabilization austempering holding time, the bainite volume(%) increased but the martensite volume(%) decreased. As destabilization austempering holding time is same, bainite volume(%) decreased, martensite increased with the increment of Ni and Mo contents. The hardness and tensile strength decreased, but impact energy increased with the decrease of Ni and Mo contents, and increment of holding time of destabilization austempering treatment.

  • PDF

탄소 나노소재를 이용한 윤활유 기반 나노유체의 제조 및 평가 (Preparation and Characterization of Lubricating Oil-based Nanofluids Containing Carbon Nanoparticles)

  • 최철;정미희;오제명
    • 한국재료학회지
    • /
    • 제19권3호
    • /
    • pp.156-162
    • /
    • 2009
  • Lubricant-based nanofluids were prepared by dispersing carbon nanoparticles in gear oil. In this study, the effects of the particle size, shape and dispersity of the particles on the tribological properties of nanofluids were investigated. Dispersion experiments were conducted with a high-speed bead mill and an ultrasonic homogenizer, and the surfaces of the nanoparticles were simultaneously modified with several dispersants. The effective thermal conductivity of the nanofluids was measured by the transient hot-wire method, and the tribological behaviors of the nanofluids were also investigated with a disk-on-disk tribo-tester. The results of this study clearly showed that the combination of the nanoparticles, the deagglomeration process, the dispersant and the dispersion solvent is very important for the dispersity and tribological properties of nanofluids. Lubricant-based nanofluids showed relatively low thermal conductivity enhancement, but they were highly effective in decreasing the frictional heat that was generated. For nanofluids containing 0.1vol.% graphite particles in an oil lubricant, The friction coefficient in the boundary and fluid lubrication range was reduced to approximately 70% of the original value of pure lubricant.