• 제목/요약/키워드: graphite oxidation

검색결과 130건 처리시간 0.023초

황산 용액중의 분극시 나타나는 탄소전극들의 계면반응 (Study on the surface reactions of carbon and graphite electrodes in sulfuric acid solution)

  • 오한준;김인기;이종호;이영훈
    • 한국결정성장학회지
    • /
    • 제6권4호
    • /
    • pp.648-662
    • /
    • 1996
  • 임피던스 스펙트럼을 이용하여 황산 용액에서 glassy carbon과 인조흑연(PVDF 합성 흑연)의 전극표면에 cyclic 분극을 부하 하였을 경우 전극표면에서 나타나는 표면반응에 대하여 조사하여 . 두 재료 표면에서 산소의 산화 혹은 환원과 관련되거나 또는 탄소재료 표면에 화학흡착된 표면작용기(surface functional group)의 변화와 관련되는 것으로 생각되는 산화환원 피크가 potentio-dynamic곡선에서 나타났다. 이러한 전극 표면에서의 표면작용기의 산화환원은 glassy carbon과 PVDF합성 흑연의 임피던스 스펙트럼에도 커다란 영향을 미치는 것으로 나타났다. 또 glassy carbon과 PVDF합성 흑연에서의 임피던스 파라미터는 분극부하에의해 현저한 변화가 나타났다.가 나타났다.

  • PDF

sSn으로 캡슐화된 그라파이트 복합체의 리튬이온전지 부극 특성 (Electrochemical Properties of Tin-Encapsulated Graphite as Anode in Lithium-Ion Batteries)

  • 안중호
    • 한국분말재료학회지
    • /
    • 제10권1호
    • /
    • pp.21-25
    • /
    • 2003
  • The Sn - graphite composites were prepared by chemical encapsulation method for anode materials in Li-ion batteries. EDS and XRD analysis confirmed the presence of Sn in the graphite structure. Cyclic voltammometry (CV) measurement shows extra reduction and oxidation peaks, which might to be related to the formations of $Li_xSn$ alloy compounds. Graphite-tin composite electrodes demonstrated higher Lithium storage capacities than graphite electrodes. Due to the nature of fine Sn particles on graphite surface, the graphite-tin composite electrodes have shown a good cycle properties.

Characterization of Graphite Oxide Reduced by Thermal and/or Chemical Treatments

  • Kim, Jungsoo;Nam, Dae-Geun;Yeum, Jeong Hyun;Suh, Sungbu;Oh, Weontae
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권5호
    • /
    • pp.274-279
    • /
    • 2015
  • Reduced graphite oxides (rGOs) were prepared by the common graphite oxidation method and the subsequent reductions. The reduction of graphite oxides (GOs) was conducted chemically and/or thermally. To further reduce the as-prepared rGOs, GOs were treated with chemical/thermal reductions or thermal/chemical reductions, in which the reduction sequence was also considered. The structural changes of as-prepared rGOs, depending on reduction methods, were investigated by X-ray diffraction analyses, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. In addition, we discuss the structural change of the rGOs and their closely related physical and electrical properties, such as thermogravimetry, nitrogen adsorption isotherm, and sheet resistance.

박리법을 이용한 그래핀 제조 (Fabrication of Graphene Using Exfoliation Method)

  • 이정수;김부안;문창권
    • 동력기계공학회지
    • /
    • 제18권6호
    • /
    • pp.7-12
    • /
    • 2014
  • The effect of various synthesis conditions in the fabrication of graphene using the exfoliation methods has been investigated. Graphite oxide and graphene fabricated by various synthesis conditions were identified by SEM and XRD. Graphite oxide was made from graphite by the chemical oxidation, and graphene was manufactured from graphite oxide by thermal exfoliation method. As a result, it is confirmed that graphite oxide was well formed from graphite, and the graphene could be obtained from graphite oxide. And it was found that the interlayer spacing between the graphene layers depended on the reaction time and particle size, regardless of the reaction temperature from $5^{\circ}C$ to $25^{\circ}C$.

Pyrocatechol Violet Modified Graphite Pencil Electrode for Flow Injection Amperometric Determination of Sulfide

  • Emir, Gamze;Karakaya, Serkan;Dilgin, Yusuf
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권3호
    • /
    • pp.248-256
    • /
    • 2020
  • In this study, pyrocatechol violet (Pcv) is proposed for the first time as an efficient electrocatalyst for oxidation of sulfide and flow injection analysis (FIA) of sulfide. A graphite pencil electrode (GPE) was modified with Pcv via immersion of the GPE into 0.01 M Pcv solution for 15 min. Cyclic voltammograms (CVs) demonstrated that Pcv/GPE exhibits a good electrocatalytic performance due to shift in the potential from +400 at bare GPE to +70 mV at Pcv/GPE and obtaining an enhancement in the peak current compared with the bare GPE. A linear range between 0.25 and 250 μM sulfide with a detection limit of 0.07 μM was obtained from the recorded current-time curves in Flow Injection Analysis (FIA) of sulfide. Sulfide in water samples was also successfully determined using the proposed FI amperometric methods.

$TiO_2$ 수열코팅에 의한 흑연의 표면 개질 (Modification of Graphite Surface By the Hydrothermal Coating of $TiO_2$)

  • 최승도;박병규
    • 한국결정학회지
    • /
    • 제8권2호
    • /
    • pp.154-159
    • /
    • 1997
  • 0.2M TiCl4 수용액에 특수열 코팅 처리하여 TiO2 코팅된 흑연 분말 표면의 개질에 관하여 연구하였다. 35℃ 반응온도에서 TiO2 rutile상이 흑연 분말에 코팅되엇다. 코팅된 흑연 분말은 물에 대한 친수성이 증가하였다. 반응온도가 60℃로 증가함에 따라 코팅되는 TiO2의 양도 증가하였다. TiO2 코팅된 흑연 분말의 산화시작온도는 30'C 정도 증가하였고 최종감량효과도 30%이상 증가하였다.

  • PDF

Thermal Emissivity of Nuclear Graphite as a Function of Its Oxidation Degree (1) -Effects of Density, Porosity, and Microstructure-

  • Seo, Seung-Kuk;Roh, Jae-Seung;Kim, Eung-Seon;Chi, Se-Hwan;Kim, Suk-Hwan;Lee, Sang-Woo
    • Carbon letters
    • /
    • 제10권3호
    • /
    • pp.225-229
    • /
    • 2009
  • Thermal emissivity of commercial nuclear graphites (IG-110, PCEA, IG-430 and NBG-18) following changes in oxidation degrees were examined. Specimens were oxidized to 0%, 5%, and 10% in air flow of 5l/min at $600^{\circ}C$ using a furnace, and the thermal emissivities were measured using an infrared spectrum analyzer. The measuring temperatures for the thermal emissivity were $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$, $400^{\circ}C$ $500^{\circ}C$. Also density and porosity of the specimens were observed to compare with thermal emissivity. Results showed that emissivity increased with oxidation, and the 10% oxidized NBG-18 showed the highest emissivity (0.890) which value is larger for 24% than the value of as-received specimen. Investigation of factors affecting the emissivity revealed that increases in the surface roughness and porosity due to oxidation were responsible for the increase in emissivity after oxidation.

산화처리 탄소 및 이를 이용한 EDLC 특성 (Oxidation-treated of Oxidized Carbons and its Electrochemical Performances for Electric Double Layer Capacitor)

  • 양선혜;김익준;전민제;문성인;김현수;안계혁;이윤표
    • 한국전기전자재료학회논문지
    • /
    • 제20권6호
    • /
    • pp.502-507
    • /
    • 2007
  • The oxidation treatment of several carbon materials with a sodium chlorate and 70 wt.% of nitric acid, combined with heat treatment, were attempted to achieve an electrochemical active material with a larger capacitance. Among pitch, needle coke, calcinated needle coke and natural graphite, the structure of needle coke and calacinated needle coke were changed to the graphite oxide structure with the expansion of the inter-layer. On the other hand, the calcinated needle coke after oxidation and heating at $200^{\circ}C$ has exhibited largest capacitance per weight and volume of 29.5 F/g and 24.5 F/ml at the two-electrode system in the potential range of 0 to 2.5 V. The electrochemical performance of the calcinated needle coke was discussed with the phenomenon of the electric field activation and the formation of new pores between the expanded inter-layer at first charge.

Expanded Graphite 산화물과 자성 나노입자의 복합화와 자기적 특성 (Synthesis and Magnetic Properties of Expanded Graphite Oxide/Magnetic Nanoparticle Composite)

  • 노일표;임현준;강명철;이찬혁;심인보
    • 한국자기학회지
    • /
    • 제22권1호
    • /
    • pp.11-14
    • /
    • 2012
  • Expanded graphite 산화물과 자성 나노입자의 복합화는 화학적 방법을 이용하였으며, Ni과 Co 나노입자를 사용하여 간단한 방법으로 자기적 특성을 가지는 graphite 산화물을 합성하였다. $H_2SO_4$$(NH_4)SO_4$을 첨가한 혼합 용액을 제조하여, natural graphite와 반응시키고, 1차 열처리하여 expanded graphite를 제조하였다. $1050^{\circ}C$에서 30초간 급속 2차 열처리와 화학적 산화 과정을 거쳐 expanded graphite oxide로 변화시킨 뒤에 $Ni(acac)_2$, $Co(acac)_3$과 화학적 반응을 통하여 Expanded graphite 산화물자성 나노입자 복합체를 제조하였다. 결정 구조 분석을 위하여 x-선 회절 측정을 수행하였으며, Raman 분광 측정으로 graphite 산화물의 층상 구조를 분석하였다. 미세구조 분석을 위하여 투과전자현미경 측정을 수행하였으며, 진동시료형 자화율측정기를 이용하여 복합체의 자기적 특성을 연구하였다. 이러한 연구 결과는 graphite 화합물과 자성 물질의 복합화를 위한 기저 기술로 활용될 수 있을 것이다.