Browse > Article
http://dx.doi.org/10.4283/JKMS.2012.22.1.011

Synthesis and Magnetic Properties of Expanded Graphite Oxide/Magnetic Nanoparticle Composite  

Roh, Il-Pyo (Department of Nano & Electronic Physics, Kookmin University)
Yim, Hyun-Joon (Department of Nano & Electronic Physics, Kookmin University)
Kang, Myung-Chul (Department of Nano & Electronic Physics, Kookmin University)
Rhee, Chan-Hyuk (Department of Nano & Electronic Physics, Kookmin University)
Shim, In-Bo (Department of Nano & Electronic Physics, Kookmin University)
Abstract
The composites of expanded graphite oxide and magnetic nanoparticle (Ni and Co) were synthesized by using simple chemical method. From the raw material natural graphite, the expanded graphite was fabricated using sulfuric acid and $1^{st}$ heat treatment at $600^{\circ}C$ for 1 hour. The expanded graphite was changed to expanded graphite oxide by 2nd heat treatment at $1050^{\circ}C$ for 15 sec and chemical oxidation. The expanded graphite oxide/1-methyl-2-pyrrolidone solution reacts with the magnetic nanoparticle to form a magnetic graphite oxide composite. These graphite-based materials were characterized by x-ray diffractometer, Raman spectroscopy, transmission electron microscope, and vibration sample magnetometer. We expect that these results of this paper were become basis research of graphite oxide composite.
Keywords
expanded graphite; graphite oxide; magnetic nanoparticle-graphite oxide composite;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, and Y. Chen, Nano Lett. 9, 220 (2009).   DOI   ScienceOn
2 H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, ACS Nano 2, 463 (2008).   DOI   ScienceOn
3 D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, Nature 448, 457 (2007).   DOI   ScienceOn
4 J. Shen, Y. Hu, M. Shi, N. Li, H. Ma, and M. Ye, J. Phys. Chem. C 114, 1498 (2010).   DOI   ScienceOn
5 A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).   DOI   ScienceOn
6 M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, and E. D. Williams, Nano Lett. 7, 1643 (2007).   DOI   ScienceOn
7 S. Berciaud, S. Ryu, L. E. Brus, and T. F. Heinz, Nano Lett. 9, 346 (2009).   DOI   ScienceOn
8 A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).   DOI
9 S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature 442, 282 (2006).   DOI   ScienceOn
10 K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Science 315, 1379 (2007).   DOI   ScienceOn
11 J. Cervenka, M. I. Katsnelson, and C. F. J. Flipse, Nat. Phys. 5, 840 (2009).   DOI   ScienceOn