• 제목/요약/키워드: graphite coating

검색결과 142건 처리시간 0.021초

금속분리판의 Electro Polishing 및 CrN 코팅을 통한 PEMFC 성능 향상을 위한 연구 (A Study to Improve PEMFC Performance by Using Electro Polishing and CrN Coating on Metal Bipolar Plate)

  • 황성택;천승호;송준석;윤영훈;김병헌;장하;김대웅;현덕수;오병수
    • 한국자동차공학회논문집
    • /
    • 제22권4호
    • /
    • pp.65-71
    • /
    • 2014
  • As an important component of a fuel cell, the bipolar plate comprises a large proportion in the fuel cell's volume, weight and price. The bipolar plate is the most widely used; however, graphite bipolar plate is large in volume, brittle and therefore easily broken during assembling. In addition, due to its poor machinability, production costs a lot, unless mass production. Compared with the graphite bipolar plate, the metal bipolar plate has good machinability, high electric conductivity and strong mechanical strength; however, it corrodes easily and has a high contact resistance, so in order to prevent corrosion and reduce the contact resistance, the basic metal needs to be processed by use of electro polishing and coating. The water which is produced by electrochemical reactions in the fuel cell must be discharged smoothly. In this study, in order to prevent corrosion the processes of electro polishing and CrN coating were used. According to the presence or absence of these processes, the contact angles can be measured and different metal bipolar plates can be made, these plates can be used for comparing and analyzing the performance of the fuel cell.

탄소계 소재를 이용한 극저주파 영역에서의 자기 차폐효과 연구 (Study on the Magnetic Shield Effect of Carbon-based Materials at Extremely Low Frequency)

  • 오성문;강동수;이상민;백운경;노재승
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제1권1호
    • /
    • pp.15-20
    • /
    • 2015
  • To examine the magnetic shielding effect for carbon-based materials at extremely low frequencies (60 Hz), two types of carbon black (Super-P and Denka Black) and a natural graphite (HC-198) were mixed into organic binder at 10 wt.% to produce a coating solution, and a powder coating with varying thickness was applied on an aluminum disk measuring 88 mm in radius. A device was developed to measure the sheielding effect at extremely low frequencies. A closed circuit was achieved by connecting a transformer and a resistor. The applied voltage was fixed at 65 V, and the magnetic field was measured to being the range of 4.95~5.10 mG. Depending on the thickness of the coating layer, the magnetic field showed a decreasing trend. The maximum decrease in the magnetic field of 38.3% was measured when natural graphite was coated with specimens averaging $455{\mu}m$. This study confirmed that carbon-based materials enable magnetic shielding at extremely low frequencies, and that the magnetic shielding effect can be enhanced by varying the coating thickness.

산처리에 의해 개질된 리튬이온 이차전지용 흑연 전극의 특성 (Performance of Graphite Electrode Modified with Acid Treatment for Lithium Ion Secondary Battery)

  • 김명수;문승환;김문걸;김택래;함현식;박홍수
    • 한국응용과학기술학회지
    • /
    • 제22권2호
    • /
    • pp.142-150
    • /
    • 2005
  • The natural graphite particles A and heat-treated graphite particles B at $1800\;^{\circ}C$ after pitch-coating were used as the anode base materials for lithium ion secondary battery. In order to improve the performance of anode materials, the base anode materials were treated with various acids. With the acid treatments of 62% $HNO_3$ and 95% $H_2SO_4$ aqueous solution, the specific surface area and electrical conductivity of base anode materials were increased, and the initial charge-discharge capacity and cycle performance were improved due to the elimination of structural defects.

실리카로 코팅된 흑연을 이용한 리튬 이차전지용 흑연/실리콘/피치 복합소재의 전기화학적 특성 (Electrochemical Characteristics of Graphite/Silicon/Pitch Anode Composites for Lithium Ion Batteries using Silica-Coated Graphite)

  • 이수현;이종대
    • Korean Chemical Engineering Research
    • /
    • 제58권1호
    • /
    • pp.142-149
    • /
    • 2020
  • 본 연구에서는 인조흑연의 낮은 이론용량을 개선하기 위하여 음극소재로서 흑연/실리콘/피치 복합소재의 전기화학적 성능을 조사하였다. 구형의 인조 흑연 표면을 polyvinylpyrrolidone (PVP) 양친성 물질로 코팅한 후 실리카를 성장시켜 흑연/실리카 소재를 합성하였으며, 석유계 피치 코팅과 마그네슘 열 환원법을 통해 흑연/실리콘/피치 복합소재를 제조하였다. 흑연/실리콘/피치 복합소재의 전극은 poly(vinylidene fluoride) (PVDF), carboxymethyl cellulose (CMC), polyacrylic acid (PAA) 바인더에 따라 제조하였으며, 다양한 전해액과 첨가제를 이용하여 전지를 조립하였다. 흑연/실리콘/피치 복합소재는 X-ray diffraction (XRD), scanning electron microscope (SEM)와 thermogravimetric analyzer (TGA)를 통해 물리적 특성을 분석하였으며, 전기화학적 특성은 충 방전 사이클, 율속, 순환전압전류, 임피던스 테스트를 통해 조사하였다. 흑연/실리콘/피치 복합소재는 흑연 : 실리카 : 피치 = 1 : 4 : 8일 때 높은 사이클 안정성을 보였다. PAA 바인더를 사용하여 제조된 전극은 높은 용량과 안정성을 보였으며, EC:DMC:EMC 전해액을 사용하였을 때 719 mAh/g의 높은 초기 용량과 우수한 사이클 안정성 나타내었다. 또한 vinylene carbonate (VC) 첨가시에 2 C/0.1 C 일 때 77% 용량 유지율과 0.1 C/0.1 C 일 때 88% 용량 회복을 나타냄을 확인하였다.

Mechanical Properties of Chemical-Vapor-Deposited Silicon Carbide using a Nanoindentation Technique

  • Kim, Jong-Ho;Lee, Hyeon-Keun;Park, Ji-Yeon;Kim, Weon-Ju;Kim, Do-Kyung
    • 한국세라믹학회지
    • /
    • 제45권9호
    • /
    • pp.518-523
    • /
    • 2008
  • The mechanical properties of silicon carbide deposited by chemical vapor deposition process onto a graphite substrate are studied using nanoindentation techniques. The silicon carbide coating was fabricated in a chemical vapor deposition process with different microstructures and thicknesses. A nanoindentation technique is preferred because it provides a reliable means to measure the mechanical properties with continuous load-displacement recording. Thus, a detailed nanoindentation study of silicon carbide coatings on graphite structures was conducted using a specialized specimen preparation technique. The mechanical properties of the modulus, hardness and toughness were characterized. Silicon carbide deposited at $1300^{\circ}C$ has the following values: E=316 GPa, H=29 GPa, and $K_c$=9.8 MPa $m^{1/2}$; additionally, silicon carbide deposited at $1350^{\circ}C$ shows E=283 GPa, H=23 GPa, and $K_c$=6.1 MPa $m^{1/2}$. The mechanical properties of two grades of SiC coating with different microstructures and thicknesses are discussed.

고품질 유리질 카본 코팅을 위한 페놀 수지의 고압 경화 (High Pressure Curing of Phenol Resin for High Quality Coating of Glassy Carbon)

  • 홍석기;조광연;권오현;조용수;장승조
    • 한국세라믹학회지
    • /
    • 제48권2호
    • /
    • pp.141-146
    • /
    • 2011
  • Successful coating of high quality glassy carbon is introduced by applying high pressure during the curing process of dip-coated phenol resin on graphite. The dependence of the applied pressure on the quality of the glassy carbon layer has not been reported so far. Pressure was changed from 0 to 400 psi during curing at $200^{\circ}C$. After carbonized at $1100^{\circ}C$ in inert atmosphere for the 400 psicured sample, as a promising result, a thick (~ 3 mm) and smooth glassy carbon layer could be obtained without any breakage, and the yield of carbonization was remarkably increased. It is believed that the cross-linking of resins results in decreasing volatile contents and, thus, increasing the yield of the glassy carbon. The origin of the improvement is discussed on the basis of several analytical results including FE-SEM, FT-IT and Raman spectrum.

탄소재료의 적용 방법에 따른 파티클 보드의 연소 특성 (Evaluation of Fire Characteristics for Particle-board with Exfoliated Graphite Nanoplatelets Added)

  • 서현정;조정민;황욱;이민철
    • 한국연소학회지
    • /
    • 제22권4호
    • /
    • pp.1-8
    • /
    • 2017
  • This study was conducted to evaluate the fire retardant performance of exfoliated graphite nanoplatelets (xGnP) applied for particleboard. This work measured heat release rate(HRR), total heat release(THR) and smoke production rate(SPR) of xGnP added particleboard, using cone calorimeter to assess its fire characteristics according to the KS F ISO 5660-1 standard code. Heat release rates of all specimens treated by xGnP were less than the $200kW/m^2$ for a total experiment period of five minutes. Heat release rates of the specimens coated with xGnP were lower than those of the specimens made by mixing wood particles with xGnP directly. Meanwhile, the total heat release rates of xGnP coated specimen maintained quite lower level than the uncoated so the xGnP coating were effective in improving the fire retardant performance of particleboard. However, the smoke emission peaking problem at the initial combustion period, which was caused by adding base coating materials, should be resolved for further satisfaction as a fire retardant materials.

Corrosion characteristics and interfacial contact resistances of TiN and CrN coatings deposited by PVD on 316L stainless steel for polymer electrolyte membrane fuel cell bipolar plates

  • Lee, Jae-Bong;Oh, In Hwan
    • Corrosion Science and Technology
    • /
    • 제12권4호
    • /
    • pp.171-178
    • /
    • 2013
  • In a polymer membrane fuel cell stack, the bipolar plate is a key element because it accounts for over 50% of total costs of the stack. In order to lower the cost of bipolar plates, 316L stainless steels coated with nitrides such as TiN and CrN by physical vapor deposition were investigated as alternative materials for the replacement of traditional brittle graphite bipolar-plates. For this purpose, interfacial contact resistances were measured and electrochemical corrosion tests were conducted. The results showed that although both TiN and CrN coatings decreased the interfacial contact resistances to less than $10m{\Omega}{\cdot}cm^2$, they did not significantly improve the corrosion resistance in simulated polymer electrolyte membrane fuel cell environments. A CrN coating on 316L stainless steel showed better corrosion resistance than a TiN coating did, indicating the possibility of using modified CrN coated metallic bipolar plates to replace graphite bipolar plates.

화학기상반응으로 흑연 위에 만든 SiC 반응층의 모양에 미치는 보론 카바이드의 영향 (Effect of Boron Carbide on the Morphology of SiC Conversion Layer of Graphite Substrate formed by Chemical Vapor Reaction)

  • 홍현정;류도형;조광연;공은배;신동근;신대규;이재성
    • 한국세라믹학회지
    • /
    • 제44권8호
    • /
    • pp.445-450
    • /
    • 2007
  • A conversion layer of SiC was fabricated on the graphite substrate by a chemical vapor reaction method in order to enhance the oxidation resistance of graphite. The effect of boron carbide containing powder bed on the morphology of SiC conversion layer was investigated during the chemical vapor reaction of graphite with the reactive silicon-source at $1650^{\circ}C\;and\;1700^{\circ}C$ for 1 h. The presence of boron species enhanced the conversion of graphite into SiC, and altered the morphology of the conversion layer significantly as well. A continuous and thick SiC conversion layer was formed only when the boron source was used with the other silicon compounds. The boron is deemed to increase the diffusion of SiOx in SiC/C system.