Browse > Article
http://dx.doi.org/10.15231/jksc.2017.22.4.001

Evaluation of Fire Characteristics for Particle-board with Exfoliated Graphite Nanoplatelets Added  

Seo, Hyun Jeong (Dept. of Safety Engineering, College of Engineering, Incheon National Univ.)
Jo, Jeong Min (Dept. of Safety Engineering, College of Engineering, Incheon National Univ.)
Hwang, Wuk (Dept. of Safety Engineering, College of Engineering, Incheon National Univ.)
Lee, Min Chul (Dept. of Safety Engineering, College of Engineering, Incheon National Univ.)
Publication Information
Journal of the Korean Society of Combustion / v.22, no.4, 2017 , pp. 1-8 More about this Journal
Abstract
This study was conducted to evaluate the fire retardant performance of exfoliated graphite nanoplatelets (xGnP) applied for particleboard. This work measured heat release rate(HRR), total heat release(THR) and smoke production rate(SPR) of xGnP added particleboard, using cone calorimeter to assess its fire characteristics according to the KS F ISO 5660-1 standard code. Heat release rates of all specimens treated by xGnP were less than the $200kW/m^2$ for a total experiment period of five minutes. Heat release rates of the specimens coated with xGnP were lower than those of the specimens made by mixing wood particles with xGnP directly. Meanwhile, the total heat release rates of xGnP coated specimen maintained quite lower level than the uncoated so the xGnP coating were effective in improving the fire retardant performance of particleboard. However, the smoke emission peaking problem at the initial combustion period, which was caused by adding base coating materials, should be resolved for further satisfaction as a fire retardant materials.
Keywords
Fire safety; Wood-based materials; Cone calorimeter; Carbon materials;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 L.A. Lowden, T.R. Hull, Flammability behavior of wood and a review of the methods for its reduction, Fire. Sci. Rev., 2(4) (2013) 1-19.   DOI
2 C. Branca, C.D. Blasi, 2011. Semi-global mechanisms for the oxidation of diammonium phosphate impregnated wood, J. Anal. Appl. Pyrolysis., 91 (1) (2011) 97-104.   DOI
3 W.F. Walter, B. Heinrich, M. Washington, J.K. Hermanus, L. Dewan, Characterization of commercial expandable graphite fire retardants, Thermochimica Acta, 584, (2014) 8-16.   DOI
4 Z.X. Zhang, J. Zhang, B. Lu, Z.X. Xin, C.K. Kang, J.K. Kim, Effect of flame retardants on mechanical properties, flammability and foamability of PP/wood-fiber composites, Compos. Part A. Appl. Sci. Manuf., 43, (2012) 150-158.   DOI
5 H. Fukushima, L.T. Drzal, B.P. Rook, M.J. Rich, Thermal conductivity of exfoliated graphite nanocomposites, J. Therm. Anal. Calorim., 85, (2006) 235-238.   DOI
6 B. Li, Influence of polymer additives on thermal decomposition and smoke emission of poly(vinyl chloride), Polym. Degrad. Stabil., 82(3), (2003) 467-476.   DOI
7 B.H. Lee, H.S. Kim, S. Kim, H.J. Kim, B.W. Lee, Y. Deng, Q. Feng, J. Luo, Evaluating the flammability of wood-based panels and gypsum particleboard using a cone calorimeter, Constr. Build. Mater., 25(7), (2011) 3044-3050.   DOI
8 A.P. Mouritz, Z. Mathys, A.G. Gibson, Heat release of polymer composites in fire, Compos. Part A. Appl. Sci. Manuf., 37(7), (2006) 1040-1054.   DOI
9 A.F. Bettencourta, C.B. Neves, M.S. de Almeida, L.M. Pinheiro, S.A. Oliveira, L.P. Lopes, M.F. Castro, Biodegradation of acrylic based resins: A review, Dent. Mater., 26, (2010) 171-180.   DOI
10 J.H. Lee, J. Kim, S. Kim, J.T. Kim, Thermal Extractor Analysis of VOCs Emitted from Building Materials and Evaluation of the Reduction Performance of Exfoliated Graphite Nanoplatelets, Indoor. Built. Environ., 22(1) (2014) 68-76.   DOI
11 H.J. Seo, S.G. Jeong, S. Kim, Development of thermally enhanced wood-based materials with high VOCs adsorption using exfoliated graphite nanoplatelets for use as building materials, Bioresources, 10(4) (2015) 7081-7091.
12 C.E. Byrne, D.C. Nagle, Carbonization of wood for advanced materials applications, Carbon 35(2) (1997) 259-266.   DOI
13 H. Fukushima and L. T. Drzal, A carbon nanotube alternative: graphite nanoplatelets as reinforcements for polymers, ANTEC 2003 Conference Proceedings, 2003, 2230-2234.
14 H.J. Seo, M.R. Kang, D.W. Son, Combustion Properties of Woods for Indoor Use (II). J. Korean Wood Sci. Technol., 43(4) (2015) 478-485.   DOI
15 H.J. Seo, M.R. Kang, J.E. Park, D.W. Son, Combustion Characteristics of Useful Imported Woods, J. Korean Wood Sci. Technol., 44(1), (2016) 19-29.   DOI
16 S. Virendra, J. Daeha, Z. Lei, D. Soumen, I.K. Saiful, S. Sudipta, Graphene based materials: Past, present and future, Prog. Mater. Sci., 56 (2011) 1178-1271.   DOI
17 V. Babrauskas, Development of the Cone Calorimeter - A Bench-scale Heat Release Rate Apparatus Based on Oxygen Consumption, Fire and Materials. 8(2) (1983) 81-95.   DOI
18 J. Rychly, M. Hudakova, L. Rychla, K. Csomorova, The rate of oxygen consumption from a cone calorimeter as an original criterion of evaluation of the fire risk for the Resin Kit polymers, Eur. j. environ. saf. sci., 2(2), (2014) 23-27.
19 S. Kim, L.T. Drzal, High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets, Sol, Energy, Mater, Sol, C., 93 (2009) 136-142.   DOI
20 J.I. Kim, M.R. Kang, D.W. Son and S.B. Park, Evaluation of flame retardant performance of retardant-treated wood by inorganic flame retardant, J, Kor, Wood, Sci, Technol., Spring Annual Conference, 2012, 56-57.
21 S. Lee, D. Cho, L.T. Drzal, Realtime observation of the expansion behavior of intercalated graphite flake, J, Mater, Sci., 40 (2005) 231-234.   DOI
22 J.J. Mack, L.M. Viculis, A. Ali, R. Luoh, G. Yang, H.T. Hahn, F.K. Ko, R.B. Kaner, Graphite nanopletelet reinforcement of electrospun polyacrylonitrile nanofibers, Adv, Mater., 17 (2005) 77-80.   DOI
23 Y.F. Zhao, M. Xiao, S.J. Wang, X.C. Ge, Y.Z. Meng, Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites, Compos, Sci, Technol., 67 (2007) 2528-2534.   DOI
24 H.J. Seo, W. Hwang, M.C. Lee, Combustion Characteristics of Fire Retardants Treated Domestic Wood, J. Korean Soc. Combust. 22(2), (2017) 14-23.
25 S.C. Kim, D.G. Nam, Fire Characteristics of Flaming and Smoldering Combustion of Wood Combustibles Considering Thickness, Fire Sci. Eng., 29(4), (2015) 67-72.   DOI
26 Y.J. Chung, Combustion Chracteristics of Veneers Treated by Ammonium Salts, J. Korean Ind. Eng. Chem., 18(2) (2007) 194-198.
27 J. Lindholm, A. Brink, M. Hupa, Influence of decreased sample size on cone calorimeter results, Fire Mater, 36, (2012) 63-73.   DOI
28 T. Kamae, L.T. Drzal, Carbon fiber/epoxy composite property enhancement through incorporation of carbon nanotubes at the fiber-matrix interphase- Part I: The development of carbon nanotube coated carbon fibers and the evaluation of their adhesion, Compos. A., 43(9) (2012) 1569-1577.   DOI
29 S.J. Kang, K.J. Kim, M.S. Kim, and B.J. Kim et al, Application Handbook of carbon materials (1sted.), Publisher Daeyoung, Seoul, 2008, 715.
30 B. Dittrich, K.A. Wartig, D. Hofmann, R. Mulhaupt B. Schartel, Flame retardancy through carbon nanomaterials: Carbon black, multiwall nanotubes,expanded graphite, multi-layer graphene and graphene in polypropylene, Polym. Degrad. Stabli., 98 (2013) 1-11.   DOI
31 S. Stankovich, D.A. Dikin, G.H.B. Dommett, L. M. Kohlhaas, E.J. Zimney, E.A. Stach, Graphenebased composite materials, Nature., 442 (2006) 282-286.   DOI
32 H.J. Seo, S. Kim, D.W. Son, S.B. Park, Review on enhancing flame retardant performance of building Materials using carbon nanomaterials, J, Kor, Soc, Living, Environ, 20(4) (2013) 514-526.
33 S. Ansari, E.P. Giannelis, Functionalized graphene sheetpoly(vinylidene fluoride) conductive nanocomposites, J, Polym, Sci, B, Polym. Phys., 47 (2009) 888-897.   DOI
34 T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M.H. Alonso, R.D. Piner, Functionalized graphene sheets for polymer nanocomposites, Nat, Nanotechnol., 3 (2008) 327-331.   DOI
35 H.J. Seo, S. Kim, D.W. Son, The Evaluation of the Flame Retardant Performance of the Wood-based Building Materials Applied to Carbon Materials, J, Kor, Soc, Living, Environ, 21(5) (2014) 855-861.   DOI
36 Y. Park, B. Jun, J. Seo, S. Kim, The Improvement of Thermal Conductivity of wood-based Panel for Laminated Flooring Used the Exfoliated Graphite for Heating Energy Conservation, J, Kor, Soc, Living, Environ, 18(6), (2011) 650-655.
37 S.W. Moon, K.B. Lim, D.H. Rie, A Study on the fire prevention performance evaluation of the wood impregnated with flame retardant, J. Kor. Institute of Fire Sci. & Eng., Spring Annual Conference, 321-324 (2011).
38 H.J. Park, S.M. Lee, Combustion characteristics of spruce wood by pressure impregnation with water glass and carbon dioxide, J. Kor. Institute of Fire Sci. & Eng., 26(4), (2012) 18-23.   DOI
39 J.M. Choi, A study on combustion characteristics of fire retardant treated pinus densiflora and pinus koraiensis, J, Kor, Wood, Sci, Technol., 39(3), (2011) 244-251.   DOI
40 D.W. Son, M.R. Kang, D.H. Lee, S.B. Park, Decay resistance and anti-mold efficacy of wood treated with fire retardants, J, Kor, Wood, Sci, Technol., 41(6), (2013) 559-565.   DOI