Evaluation of Fire Characteristics for Particle-board with Exfoliated Graphite Nanoplatelets Added |
Seo, Hyun Jeong
(Dept. of Safety Engineering, College of Engineering, Incheon National Univ.)
Jo, Jeong Min (Dept. of Safety Engineering, College of Engineering, Incheon National Univ.) Hwang, Wuk (Dept. of Safety Engineering, College of Engineering, Incheon National Univ.) Lee, Min Chul (Dept. of Safety Engineering, College of Engineering, Incheon National Univ.) |
1 | L.A. Lowden, T.R. Hull, Flammability behavior of wood and a review of the methods for its reduction, Fire. Sci. Rev., 2(4) (2013) 1-19. DOI |
2 | C. Branca, C.D. Blasi, 2011. Semi-global mechanisms for the oxidation of diammonium phosphate impregnated wood, J. Anal. Appl. Pyrolysis., 91 (1) (2011) 97-104. DOI |
3 | W.F. Walter, B. Heinrich, M. Washington, J.K. Hermanus, L. Dewan, Characterization of commercial expandable graphite fire retardants, Thermochimica Acta, 584, (2014) 8-16. DOI |
4 | Z.X. Zhang, J. Zhang, B. Lu, Z.X. Xin, C.K. Kang, J.K. Kim, Effect of flame retardants on mechanical properties, flammability and foamability of PP/wood-fiber composites, Compos. Part A. Appl. Sci. Manuf., 43, (2012) 150-158. DOI |
5 | H. Fukushima, L.T. Drzal, B.P. Rook, M.J. Rich, Thermal conductivity of exfoliated graphite nanocomposites, J. Therm. Anal. Calorim., 85, (2006) 235-238. DOI |
6 | B. Li, Influence of polymer additives on thermal decomposition and smoke emission of poly(vinyl chloride), Polym. Degrad. Stabil., 82(3), (2003) 467-476. DOI |
7 | B.H. Lee, H.S. Kim, S. Kim, H.J. Kim, B.W. Lee, Y. Deng, Q. Feng, J. Luo, Evaluating the flammability of wood-based panels and gypsum particleboard using a cone calorimeter, Constr. Build. Mater., 25(7), (2011) 3044-3050. DOI |
8 | A.P. Mouritz, Z. Mathys, A.G. Gibson, Heat release of polymer composites in fire, Compos. Part A. Appl. Sci. Manuf., 37(7), (2006) 1040-1054. DOI |
9 | A.F. Bettencourta, C.B. Neves, M.S. de Almeida, L.M. Pinheiro, S.A. Oliveira, L.P. Lopes, M.F. Castro, Biodegradation of acrylic based resins: A review, Dent. Mater., 26, (2010) 171-180. DOI |
10 | J.H. Lee, J. Kim, S. Kim, J.T. Kim, Thermal Extractor Analysis of VOCs Emitted from Building Materials and Evaluation of the Reduction Performance of Exfoliated Graphite Nanoplatelets, Indoor. Built. Environ., 22(1) (2014) 68-76. DOI |
11 | H.J. Seo, S.G. Jeong, S. Kim, Development of thermally enhanced wood-based materials with high VOCs adsorption using exfoliated graphite nanoplatelets for use as building materials, Bioresources, 10(4) (2015) 7081-7091. |
12 | C.E. Byrne, D.C. Nagle, Carbonization of wood for advanced materials applications, Carbon 35(2) (1997) 259-266. DOI |
13 | H. Fukushima and L. T. Drzal, A carbon nanotube alternative: graphite nanoplatelets as reinforcements for polymers, ANTEC 2003 Conference Proceedings, 2003, 2230-2234. |
14 | H.J. Seo, M.R. Kang, D.W. Son, Combustion Properties of Woods for Indoor Use (II). J. Korean Wood Sci. Technol., 43(4) (2015) 478-485. DOI |
15 | H.J. Seo, M.R. Kang, J.E. Park, D.W. Son, Combustion Characteristics of Useful Imported Woods, J. Korean Wood Sci. Technol., 44(1), (2016) 19-29. DOI |
16 | S. Virendra, J. Daeha, Z. Lei, D. Soumen, I.K. Saiful, S. Sudipta, Graphene based materials: Past, present and future, Prog. Mater. Sci., 56 (2011) 1178-1271. DOI |
17 | V. Babrauskas, Development of the Cone Calorimeter - A Bench-scale Heat Release Rate Apparatus Based on Oxygen Consumption, Fire and Materials. 8(2) (1983) 81-95. DOI |
18 | J. Rychly, M. Hudakova, L. Rychla, K. Csomorova, The rate of oxygen consumption from a cone calorimeter as an original criterion of evaluation of the fire risk for the Resin Kit polymers, Eur. j. environ. saf. sci., 2(2), (2014) 23-27. |
19 | S. Kim, L.T. Drzal, High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets, Sol, Energy, Mater, Sol, C., 93 (2009) 136-142. DOI |
20 | J.I. Kim, M.R. Kang, D.W. Son and S.B. Park, Evaluation of flame retardant performance of retardant-treated wood by inorganic flame retardant, J, Kor, Wood, Sci, Technol., Spring Annual Conference, 2012, 56-57. |
21 | S. Lee, D. Cho, L.T. Drzal, Realtime observation of the expansion behavior of intercalated graphite flake, J, Mater, Sci., 40 (2005) 231-234. DOI |
22 | J.J. Mack, L.M. Viculis, A. Ali, R. Luoh, G. Yang, H.T. Hahn, F.K. Ko, R.B. Kaner, Graphite nanopletelet reinforcement of electrospun polyacrylonitrile nanofibers, Adv, Mater., 17 (2005) 77-80. DOI |
23 | Y.F. Zhao, M. Xiao, S.J. Wang, X.C. Ge, Y.Z. Meng, Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites, Compos, Sci, Technol., 67 (2007) 2528-2534. DOI |
24 | H.J. Seo, W. Hwang, M.C. Lee, Combustion Characteristics of Fire Retardants Treated Domestic Wood, J. Korean Soc. Combust. 22(2), (2017) 14-23. |
25 | S.C. Kim, D.G. Nam, Fire Characteristics of Flaming and Smoldering Combustion of Wood Combustibles Considering Thickness, Fire Sci. Eng., 29(4), (2015) 67-72. DOI |
26 | Y.J. Chung, Combustion Chracteristics of Veneers Treated by Ammonium Salts, J. Korean Ind. Eng. Chem., 18(2) (2007) 194-198. |
27 | J. Lindholm, A. Brink, M. Hupa, Influence of decreased sample size on cone calorimeter results, Fire Mater, 36, (2012) 63-73. DOI |
28 | T. Kamae, L.T. Drzal, Carbon fiber/epoxy composite property enhancement through incorporation of carbon nanotubes at the fiber-matrix interphase- Part I: The development of carbon nanotube coated carbon fibers and the evaluation of their adhesion, Compos. A., 43(9) (2012) 1569-1577. DOI |
29 | S.J. Kang, K.J. Kim, M.S. Kim, and B.J. Kim et al, Application Handbook of carbon materials (1sted.), Publisher Daeyoung, Seoul, 2008, 715. |
30 | B. Dittrich, K.A. Wartig, D. Hofmann, R. Mulhaupt B. Schartel, Flame retardancy through carbon nanomaterials: Carbon black, multiwall nanotubes,expanded graphite, multi-layer graphene and graphene in polypropylene, Polym. Degrad. Stabli., 98 (2013) 1-11. DOI |
31 | S. Stankovich, D.A. Dikin, G.H.B. Dommett, L. M. Kohlhaas, E.J. Zimney, E.A. Stach, Graphenebased composite materials, Nature., 442 (2006) 282-286. DOI |
32 | H.J. Seo, S. Kim, D.W. Son, S.B. Park, Review on enhancing flame retardant performance of building Materials using carbon nanomaterials, J, Kor, Soc, Living, Environ, 20(4) (2013) 514-526. |
33 | S. Ansari, E.P. Giannelis, Functionalized graphene sheetpoly(vinylidene fluoride) conductive nanocomposites, J, Polym, Sci, B, Polym. Phys., 47 (2009) 888-897. DOI |
34 | T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M.H. Alonso, R.D. Piner, Functionalized graphene sheets for polymer nanocomposites, Nat, Nanotechnol., 3 (2008) 327-331. DOI |
35 | H.J. Seo, S. Kim, D.W. Son, The Evaluation of the Flame Retardant Performance of the Wood-based Building Materials Applied to Carbon Materials, J, Kor, Soc, Living, Environ, 21(5) (2014) 855-861. DOI |
36 | Y. Park, B. Jun, J. Seo, S. Kim, The Improvement of Thermal Conductivity of wood-based Panel for Laminated Flooring Used the Exfoliated Graphite for Heating Energy Conservation, J, Kor, Soc, Living, Environ, 18(6), (2011) 650-655. |
37 | S.W. Moon, K.B. Lim, D.H. Rie, A Study on the fire prevention performance evaluation of the wood impregnated with flame retardant, J. Kor. Institute of Fire Sci. & Eng., Spring Annual Conference, 321-324 (2011). |
38 | H.J. Park, S.M. Lee, Combustion characteristics of spruce wood by pressure impregnation with water glass and carbon dioxide, J. Kor. Institute of Fire Sci. & Eng., 26(4), (2012) 18-23. DOI |
39 | J.M. Choi, A study on combustion characteristics of fire retardant treated pinus densiflora and pinus koraiensis, J, Kor, Wood, Sci, Technol., 39(3), (2011) 244-251. DOI |
40 | D.W. Son, M.R. Kang, D.H. Lee, S.B. Park, Decay resistance and anti-mold efficacy of wood treated with fire retardants, J, Kor, Wood, Sci, Technol., 41(6), (2013) 559-565. DOI |