• 제목/요약/키워드: graphite

검색결과 2,165건 처리시간 0.029초

Expanded Graphite 산화물과 자성 나노입자의 복합화와 자기적 특성 (Synthesis and Magnetic Properties of Expanded Graphite Oxide/Magnetic Nanoparticle Composite)

  • 노일표;임현준;강명철;이찬혁;심인보
    • 한국자기학회지
    • /
    • 제22권1호
    • /
    • pp.11-14
    • /
    • 2012
  • Expanded graphite 산화물과 자성 나노입자의 복합화는 화학적 방법을 이용하였으며, Ni과 Co 나노입자를 사용하여 간단한 방법으로 자기적 특성을 가지는 graphite 산화물을 합성하였다. $H_2SO_4$$(NH_4)SO_4$을 첨가한 혼합 용액을 제조하여, natural graphite와 반응시키고, 1차 열처리하여 expanded graphite를 제조하였다. $1050^{\circ}C$에서 30초간 급속 2차 열처리와 화학적 산화 과정을 거쳐 expanded graphite oxide로 변화시킨 뒤에 $Ni(acac)_2$, $Co(acac)_3$과 화학적 반응을 통하여 Expanded graphite 산화물자성 나노입자 복합체를 제조하였다. 결정 구조 분석을 위하여 x-선 회절 측정을 수행하였으며, Raman 분광 측정으로 graphite 산화물의 층상 구조를 분석하였다. 미세구조 분석을 위하여 투과전자현미경 측정을 수행하였으며, 진동시료형 자화율측정기를 이용하여 복합체의 자기적 특성을 연구하였다. 이러한 연구 결과는 graphite 화합물과 자성 물질의 복합화를 위한 기저 기술로 활용될 수 있을 것이다.

그라파이트/구리 복합재료의 기계적 특성에 미치는 그라파이트 형상과 복합재료 제조방법의 영향 (Effects of Graphite Shape and Composite Fabricating Method on Mechanical Properties of Graphite/Copper Composites)

  • 손유한;한준현
    • 한국재료학회지
    • /
    • 제28권10호
    • /
    • pp.601-609
    • /
    • 2018
  • To study the effects of graphite shape and the composite fabricating method on the mechanical properties of graphite/copper (Gr/Cu) composites, a copper composite using graphite flakes or graphite granules as reinforcing phases is fabricated using mechanical mixing or electroless plating method. The mechanical properties of the Gr/Cu composites are evaluated by compression tests, and the compressive strength and elongation of the Gr/Cu composites using graphite granules as a reinforcing phase are compared with those of Cu composites with graphite flakes as a reinforcing phase. The compressive yield strength or maximum strength of the Gr/Cu composites with graphite granules as a reinforcing phase is higher than that of the composites using graphite flakes as a reinforcing phase regardless of the alignment of graphite. The strength of the composite produced by the electroless plating method is higher than that of the composite material produced by the conventional mechanical mixing method regardless of the shape of the graphite. Using graphite granules as a reinforcing phase instead of graphite flakes improves the strength and elongation of the Gr/Cu composites in all directions, and reduces the difference in strength or elongation according to the direction.

Application of Single-Compartment Bacterial Fuel Cell (SCBFC) Using Modified Electrodes with Metal Ions to Wastewater Treatment Reactor

  • 박두현;박영근;유철
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.1120-1128
    • /
    • 2004
  • The SCBFC was composed of bilayered cathode, the outside of which was modified with $Fe^{3+}$ (graphite-Fe(III) cathode) and the inside of which was porcelain membrane, and of an anode which was modified with $Mn^{4+}$ (graphite­Mn(lV) anode). The graphite-Fe(III), graphite-Mn(IV), and porcelain membrane were designed to have micropores. The outside of the cathode was exposed to the atmosphere and the inside was contacted with porcelain membrane. In all SCBFCS the graphite-Fe(III) was used as a cathode, and graphite-Mn(IV) and normal graphite were used as anodes, for comparison of the function between normal graphite and graphite-Mn(IV) anode. The potential difference between graphite-Mn(IV) anode and graphite-Fe(III) cathode was about 0.3 volt, which is the source for the electron driving force from anode to cathode. In chemical fuel cells composed of the graphite-Mn(IV) anode and graphite-Fe(III) cathode, a current of maximal 13 mA was produced coupled to oxidation of NADH to $NAD^{+}$ the current was not produced in SCBFC with normal graphite anode. When growing and resting cells of E. coli were applied to the SCBFC with graphite-Mn(IV) anode, the electricity production and substrate consumption were 6 to 7 times higher than in the SCBFC with normal graphite anode, and when we applied anaerobic sewage sludge to SCBFC with graphite-Mn(IV) anode, the electricity production and substrate consumption were 3 to 5 times higher than in the SCBFC with normal graphite anode. These results suggest that useful electric energy might possibly be produced from SCBFC without electron mediators, electrode-active bacteria, and extra energy consumption for the aeration of catholyte, but with wastewater as a fuel.

리튬이차전지 음극재로서 Graphite/SiO2 합성물의 전기화학적 특성 (Electrochemical Characteristics of Lithium Ion Battery Anode Materials of Graphite/SiO2)

  • 고형신;최정은;이종대
    • 공업화학
    • /
    • 제25권6호
    • /
    • pp.592-597
    • /
    • 2014
  • 본 연구에서는 리튬이차전지의 음극활물질로 graphite의 전기화학적 특성을 향상시키기 위하여 졸-겔 법에 의한 graphite/$SiO_2$ 복합소재를 제조하였다. 제조된 graphite/$SiO_2$ 합성물은 XRD, FE-SEM과 EDX를 사용하여 분석하였다. $SiO_2$에 의해 표면 개질된 graphite는 SEI 층을 안정화시키는데 장점을 보여 주었다. Graphite/$SiO_2$ 전극을 작업 전극으로, 리튬메탈을 상대전극으로 하여 리튬이차전지의 전기화학 특성을 조사하였다. $LiPF_6$ 염과 EC/DMC 용매를 전해질로 사용하여 제조한 코인 셀의 전기화학적 거동은 충방전, 사이클, 순환전압전류, 임피던스 테스트를 진행하여 평가하였다. Graphite/$SiO_2$ 전극을 사용한 리튬이차전지는 graphite 전극을 사용한 전지보다 우수한 특성을 보여주었으며, 0.1 C rate에서 465 mAh/g의 용량을 보여주었다. 또한 개질된 graphite 전극은 0.8 C rate에서 99%의 용량 보존율을 보여주었다.

Si-SiC-Graphite 복합재료의 기계적 물성과 마찰 마모 특성 (Mechanical and Tribological Properties of Si-SiC-Graphite Composites)

  • 김인섭;이병하
    • 한국세라믹학회지
    • /
    • 제32권6호
    • /
    • pp.643-652
    • /
    • 1995
  • Si-SiC-graphite composites were developed by incorporating solid lubricant graphite into Si-SiC, in the light of improving tribological properties of Si-SiC ceramics. Si-SiC-graphite composites were fabricated by infilterating silicon melt into the mixture of α-SiC, carbon black and graphite powder at 1750℃ under 3 Torr. The particle size of graphite was in the range of 150 to 500㎛, and the loading content of graphite was 0, 20, 25, 30, 35 vol% in the mixture of α-SiC and carbon black. The mechanical and tribological properties of this composites were studied. The density, hardness, flexural strength, compressive strength and Young's modulus were decreased with increasing of graphite content. An additiion of solid-lubricant graphite up to 30 vol% has improved tribological properties of Si-SiC ceramics without considerable degradation of mechanical properties.

  • PDF

Bulk graphite: materials and manufacturing process

  • Lee, Sang-Min;Kang, Dong-Su;Roh, Jea-Seung
    • Carbon letters
    • /
    • 제16권3호
    • /
    • pp.135-146
    • /
    • 2015
  • Graphite can be classified into natural graphite from mines and artificial graphite. Due to its outstanding properties such as light weight, thermal resistance, electrical conductivity, thermal conductivity, chemical stability, and high-temperature strength, artificial graphite is used across various industries in powder form and bulk form. Artificial graphite of powder form is usually used as anode materials for secondary cells, while artificial graphite of bulk form is used in steelmaking electrode bars, nuclear reactor moderators, silicon ingots for semiconductors, and manufacturing equipment. This study defines artificial graphite as bulk graphite, and provides an overview of bulk graphite manufacturing, including isotropic and anisotropic materials, molding methods, and heat treatment.

고밀도 팽창흑연 성형품의 압축 특성에 관한 연구 (A Study of Mechanical Properties in Compression on High density Graphite Products with Expanded Graphite)

  • 신영우
    • 동력기계공학회지
    • /
    • 제10권1호
    • /
    • pp.52-59
    • /
    • 2006
  • Graphite is well known as a material which has high-temperature thermostable property, chemical resistance against acid and alkaline state also is very easy to environment. Nowadays the need of graphite product is increasing rapidly because of its advantages. In this paper, the mechanical property of newly developed graphite products with high density is investigated with especially in compression test. I introduced the graphite specimens for this study by NGF method with two expandable graphite and compared to the specimens of commercial graphite sheet from expanded graphite which made by the rolling process. I investigated the characteristics of these materials by measuring specific weight, hardness, compressive strength and investigating structures by SEM, It is verified that the graphite products with NGF method has superior properties for using gasket materials than that of commercial graphite sheet.

  • PDF

고밀도 팽창흑연 성형품의 내열 특성에 관한 연구(1) (A Study on Thermostable Property of High Density Graphites Products with Expanded Graphite(1))

  • 신영우
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.148-154
    • /
    • 2005
  • Thermostable property is one of most important characteristics of graphite. Commercial graphites sheet from expanded graphite is using for high-temperature elements. Nowadays the new plant with high performance is developed in field of chemical industries, so the need of graphites is increasing rapidly. In this paper, the thermostable properties of newly developed graphite products with high density is investigated. I introduced the graphite material which developed for these heat tests by NGF method in order to test thermostable properties by comparing to the results of the commercial graphite sheet from expanded graphite in same condition. Through measuring the weight reducing ratio with various specimens in some conditions, I investigated the thermostable characteristics of these materials. It is verified that the graphite products by NGF method has almost same or superior thermostable properties comparing with that of commercial graphite sheet. Also the graphite products by NGF method have possibility of being better in thermostable properties.

  • PDF

Characteristics of Exfoliated Graphite Prepared by Intercalation of Gaseous SO3into Graphite

  • Lee, Beom-Jae
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권12호
    • /
    • pp.1801-1805
    • /
    • 2002
  • The graphite intercalation compounds(GIC) were prepared by a dry process that led to the intercalation from the direct reaction of gaseous $SO_3$ with flake type graphite. The basal spacing of the GIC was increased from 8.3 ${\AA}$ to 12 in the gallery height. The ejection of interlayer $SO_3$ molecules by the heating for 1 minute at $950^{\circ}C$ resulted in an exfoliated graphite (EG) with surprisingly high expansion in the direction of c-axis. The expansion ratios of the exfoliated graphites were increased greatly between 220 times and 400 times compared to the original graphite particles, and the bulk density was range of 0.0053 to 0.01 $g/cm^3$, depending on reaction time. The pore size distribution of exfoliated graphite was in the range of $10-170{\mu}m$, which exhibites both mesoporosity and macroporosities. This result indicates that the direct reaction of graphite paricles with gaseous $SO_3$ can be proposed as an another route for the exfoliated graphite having excellent physical properties.

The Characterization of the Resin Bonded Graphite Composite Bipolar Plate using Isotropic Graphite Powder for PEM Fuel Cell

  • Cho, Kwang-Youn;Riu, Doh-Hyung;Hui, Seung-Hun;Kim, Hong-Suk;Chung, Yoon-Jung;Lim, Yun-Soo
    • Carbon letters
    • /
    • 제8권4호
    • /
    • pp.326-334
    • /
    • 2007
  • In this study, graphite composites were fabricated by warm press molding method to realize commercialization of PEM fuel cells. Graphite composites have been considered as alternative economic materials for bipolar plate of PEM fuel cells. Graphite powder that enables to provide electrical conductivity was selected as the main substance. The graphite powder was mixed with phenolic resin and the mixture was pressed using a warm press method. First of all, the graphite powder was pulverized with a ball mill for the dense packing of composite. As the ball milling time increases, the average size of particles decreases and the size distribution becomes narrow. This allows for improvement of the uniformity of graphite composite. However, the surface electrical resistivity of graphite composite increases as the ball milling time increases. It is due to that graphite particles with amorphous phase are generated on the surface due to the friction and collision of particles during pulverizing. We found that the contact electrical resistivity of graphite particles increases as the particle size decreases. The contact electrical resistivity of graphite powders was reduced due to high molding pressure by warm press molding. This leads to improvement of the mechanical properties of graphite composite. Hydrogen gas impermeability was measured with the graphite composite, showing a possibility of the application for bipolar plate in fuel cell. And, I-V curves of the graphite composite bipolar plate exhibit a similar performance to the graphite bipolar plate.