Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.10.601

Effects of Graphite Shape and Composite Fabricating Method on Mechanical Properties of Graphite/Copper Composites  

Sohn, Youhan (Department of Materials Science and Engineering, Chungnam National University)
Han, Jun Hyun (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.28, no.10, 2018 , pp. 601-609 More about this Journal
Abstract
To study the effects of graphite shape and the composite fabricating method on the mechanical properties of graphite/copper (Gr/Cu) composites, a copper composite using graphite flakes or graphite granules as reinforcing phases is fabricated using mechanical mixing or electroless plating method. The mechanical properties of the Gr/Cu composites are evaluated by compression tests, and the compressive strength and elongation of the Gr/Cu composites using graphite granules as a reinforcing phase are compared with those of Cu composites with graphite flakes as a reinforcing phase. The compressive yield strength or maximum strength of the Gr/Cu composites with graphite granules as a reinforcing phase is higher than that of the composites using graphite flakes as a reinforcing phase regardless of the alignment of graphite. The strength of the composite produced by the electroless plating method is higher than that of the composite material produced by the conventional mechanical mixing method regardless of the shape of the graphite. Using graphite granules as a reinforcing phase instead of graphite flakes improves the strength and elongation of the Gr/Cu composites in all directions, and reduces the difference in strength or elongation according to the direction.
Keywords
graphite/copper composite; heat sink; graphite shape; compression test; electroless plating;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. Wissler, J. Power Sources, 156, 142 (2006).   DOI
2 C. Zweben, J. Miner. Met. Mater. Soc., 50, 47 (1998).   DOI
3 Q. Liu, X. B. He, S. B. Ren, C. Zhang, L. Ting-Ting and X. H. Qu, J. Alloy. Comp., 587, 255 (2014).   DOI
4 X. Si, M. Li, F. Chen, P. Eklund, J. Xue, F. Huang, S. Du and Q. Huang, Mater. Sci. Eng., 708, 311 (2017).   DOI
5 D. B. Xiong, M. Cao, Q. Guo, Z. Tan, G. Fan, Z. Li and D. Zhang, Sci. Rep., 6, 33801 (2016).   DOI
6 J. Shuai, L. Xiong, L. Zhu and W. Li, Compos. Appl. Sci. Manuf., 88, 148 (2016).   DOI
7 J. F. Silvain, C. Vincent, J. M. Heintz and N. Chandra, Compos. Sci. Tech., 69, 2474 (2009).   DOI
8 C. P. Samal, J. S. Parihar and D. Chaira, J. Alloy Comp., 569, 95 (2013).   DOI
9 S. Zhou, S. Chiang, J. Xu, H. Du, B. Li, C. Xu and F. Kang, Carbon, 50, 5052 (2012).   DOI
10 R. Prieto, J. M. Molina, J. Narciso and E. Louis, Scripta Mater., 59, 11 (2008).   DOI
11 S. Ren, J. Chen, X. He and X. Qu, Carbon, 127, 412 (2018).   DOI
12 C. Xue, H. Bai, P. F. Tao, J. W. Wang, N. Jiang and S. L. Wang, Mater. Des., 108, 250 (2016).   DOI
13 S. J. Park, T. J. Ko, J. Yoon, M. W. Moon and J. H. Han, Korean J. Mater. Res., 25, 622 (2015).   DOI
14 J. Zheng, W. B. Carlson and J. S. Reed, J. Eur. Ceram. Soc., 15, 479 (1995).   DOI
15 A. Boden, B. Boerner, P. Kusch, I. Firkowska and S. Reich, Nano Letters, 14, 3640 (2014).   DOI
16 I. Firkowska, A. Boden, B. Boerner and S. Reich, Nano Lett., 15, 4745 (2015).   DOI
17 A. Simoncini, V. Tagliaferri and N. Ucciardello, Materials, 10, 1226 (2017).   DOI
18 S. F. Moustafa, S. A. El-Badry, A. M. Sanad and B. Kieback, Wear, 253, 699 (2002).   DOI
19 L. Weizhong, N. Zhiliang, L. Ailian and A. Yongliang, Mater. Res., 18, 20 (2015).
20 Z. F. Zhang and Z. M. Sun, Mater. Sci. Eng., 408, 64 (2005).   DOI