• Title/Summary/Keyword: graphene sheets

Search Result 120, Processing Time 0.028 seconds

High Thermal Conductivity h-BN/PVA Composite Films for High Power Electronic Packaging Substrate (고출력 전자 패키지 기판용 고열전도 h-BN/PVA 복합필름)

  • Lee, Seong Tae;Kim, Chi Heon;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.95-99
    • /
    • 2018
  • High thermal conductivity films with electrically insulating properties have a great potential for the effective heat transfer as substrate and thermal interface materials in high density and high power electronic packages. There have been lots of studies to achieve high thermal conductivity composites using high thermal conductivity fillers such alumina, aluminum nitride, boron nitride, CNT and graphene, recently. Among them, hexagonal-boron nitride (h-BN) nano-sheet is a promising candidate for high thermal conductivity with electrically insulating filler material. This work presents an enhanced heat transfer properties of ceramic/polymer composite films using h-BN nano-sheets and PVA polymer resins. The h-BN nano-sheets were prepared by a mechanical exfoliation of h-BN flakes using organic media and subsequent ultrasonic treatment. High thermal conductivities over $2.8W/m{\cdot}K$ for transverse and $10W/m{\cdot}K$ for in-plane direction of the cast films were achieved for casted h-BN/PVA composite films. Further improvement of thermal conductivity up to $13.5W/m{\cdot}K$ at in-plane mode was achieved by applying uniaxial compression at the temperature above glass transition of PVA to enhance the alignment of the h-BN nano-sheets.

Axisymmetric vibration analysis of a sandwich porous plate in thermal environment rested on Kerr foundation

  • Zhang, Zhe;Yang, Qijian;Jin, Cong
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.581-601
    • /
    • 2022
  • The main objective of this research work is to investigate the free vibration behavior of annular sandwich plates resting on the Kerr foundation at thermal conditions. This sandwich configuration is composed of two FGM face sheets as coating layer and a porous GPLRC (GPL reinforced composite) core. It is supposed that the GPL nanofillers and the porosity coefficient vary continuously along the core thickness direction. To model closed-cell FG porous material reinforced with GPLs, Halpin-Tsai micromechanical modeling in conjunction with Gaussian-Random field scheme is used, while the Poisson's ratio and density are computed by the rule of mixtures. Besides, the material properties of two FGM face sheets change continuously through the thickness according to the power-law distribution. To capture fundamental frequencies of the annular sandwich plate resting on the Kerr foundation in a thermal environment, the analysis procedure is with the aid of Reddy's shear-deformation plate theory based high-order shear deformation plate theory (HSDT) to derive and solve the equations of motion and boundary conditions. The governing equations together with related boundary conditions are discretized using the generalized differential quadrature (GDQ) method in the spatial domain. Numerical results are compared with those published in the literature to examine the accuracy and validity of the present approach. A parametric solution for temperature variation across the thickness of the sandwich plate is employed taking into account the thermal conductivity, the inhomogeneity parameter, and the sandwich schemes. The numerical results indicate the influence of volume fraction index, GPLs volume fraction, porosity coefficient, three independent coefficients of Kerr elastic foundation, and temperature difference on the free vibration behavior of annular sandwich plate. This study provides essential information to engineers seeking innovative ways to promote composite structures in a practical way.

Three-dimensional MXene (Ti3C2Tx) Film for Radionuclide Removal From Aqueous Solution

  • Jang, Jiseon;Lee, Dae Sung
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2018.11a
    • /
    • pp.379-379
    • /
    • 2018
  • MXenes are a new family of 2D transition metal carbide nanosheets analogous to graphene (Lv et al., 2017; Sun et al., 2018). Due to the easy availability, hydrophilic behavior, and tunable chemistry of MXenes, their use in applications for environmental pollution remediation such as heavy metal adsorption has recently been explored (Li et al., 2017). In this study, three-dimensional (3D) MXene ($Ti_3C_2T_x$) films with high adsorption capacity, good mechanical strength, and high selectivity for specific radionuclide from aquose solution were successfully fabricated by a polymeric precursor method using vacuum-assisted filtration. The highest removal efficiency on the films was 99.54%, 95.61%, and 82.79% for $Sr^{2+}$, $Co^{2+}$, and $Cs^+$, respectively, using a film dosage of 0.06 g/ L in the initial radionuclide solution (each radionuclide concentration = 1 mg/L and pH = 7.0). Especially, the adsorption process reached an equilibrium within 30 min. The expanded interlayer spacing of $Ti_3C_2T_x$ sheets in MXene films showed excellent radionuclide selectivity ($Cs^+$ and/or $Sr^{2+}/Co^{2+}$) (Simon, 2017). Besides, the MXene films was not only able to be easily retrieved from an aqueous solution by filtration after decontamination processes, but also to selectively separate desired target radionuclides in the solutions. Therefore, the newly developed MXene ($Ti_3C_2T_x$) films has a great potential for radionuclide removal from aqueous solution.

  • PDF

Elastic wave phenomenon of nanobeams including thickness stretching effect

  • Eyvazian, Arameh;Zhang, Chunwei;Musharavati, Farayi;Khan, Afrasyab;Mohamed, Abdeliazim Mustafa
    • Advances in nano research
    • /
    • v.10 no.3
    • /
    • pp.271-280
    • /
    • 2021
  • The present work deals with an investigation on longitudinal wave propagation in nanobeams made of graphene sheets, for the first time. The nanobeam is modelled via a higher-order shear deformation theory accounts for both higher-order and thickness stretching terms. The general nonlocal strain gradient theory including nonlocality and strain gradient characteristics of size-dependency in order is used to examine the small-scale effects. This model has three-small scale coefficients in which two of them are for nonlocality and one of them applied for gradient effects. Hamilton supposition is applied to obtain the governing motion equation which is solved using a harmonic solution procedure. It is indicated that the longitudinal wave characteristics of the nanobeams are significantly influenced by the nonlocal parameters and strain gradient parameter. It is shown that higher nonlocal parameter is more efficient than lower nonlocal parameter to change longitudinal phase velocities, while the strain gradient parameter is the determining factor for their efficiency on the results.

Free vibration analysis of trapezoidal Double Layered plates embedded with viscoelastic medium for general boundary conditions using differential quadrature method

  • S. Abdul Ameer;Abbas Hameed Abdul Hussein;Mohammed H. Mahdi;Fahmy Gad Elsaid;V. Tahouneh
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.429-441
    • /
    • 2024
  • This paper studies the free vibration behavior of trapezoidal shaped coupled double-layered graphene sheets (DLGS) system using first-order shear deformation theory (FSDT) and incorporating nonlocal elasticity theory. Two nanoplates are assumed to be bonded by an interlayer van der walls force and surrounded by an external kelvin-voight viscoelastic medium. The governing equations together with related boundary condition are discretized using a mapping-differential quadrature method (DQM) in the spatial domain. Then the natural frequency of the system is obtained by solving the eigen value matrix equation. The validity of the current study is evaluated by comparing its numerical results with those available in the literature and then a parametric study is thoroughly performed, concentrating on the series effects of angles and aspect ratio of GS, viscoelastic medium, and nonlocal parameter. The model is used to study the vibration of DLGS for two typical deformation modes, the in-phase and out-of-phase vibrations, which are investigated. Numerical results indicate that due to Increasing the damping parameter of the viscoelastic medium has reduced the frequency of both modes and this medium has been able to overdamped the oscillations and by increasing stiffness parameters both in-phase and out-of-phase vibration frequencies increased.

Theoretical Investigation for the Adsorption of Various Gases (COx, NOx, SOx) on the BN and AlN Sheets (N과 AlN 시트에 다양한 기체(COx, NOx, SOx)의 흡착에 관한 이론 연구)

  • Kim, Sung-Hyun;Kim, Baek-Jin;Shin, Chang-Ho;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.1
    • /
    • pp.16-24
    • /
    • 2017
  • The adsorption of various atmospheric harmful gases ($CO_x$, $NO_x$, $SO_x$) on graphene-like boron nitride(BN) and aluminum nitride(AlN) sheets was theoretically investigated using density functional theory (DFT) and MP2 methods. The structures were fully optimized at the $B3LYP/6-31G^{**}$ and $CAM-B3LYP/6-31G^{**}$ levels of theory and confirmed to be a local minimum by the calculation of the harmonic vibrational frequencies. The MP2 single-point binding energies were computed at the $CAM-B3LYP/6-31G^{**}$ optimized geometries. Also the zero-point vibrational energy (ZPVE) and 50%-basis set superposition error (BSSE) corrections were included. The adsorptions of gases on the BN sheet were predicted to be a physisorption process and the adsorptions of gases on the AlN sheet were predicted to be a physisorption process for $CO_x$ and $NO_x$ but to be a chemisorption process for $SO_x$.

Development and Performance Evaluation of Aerosol Generator of MWCNTs for Inhalation Toxicology (흡입 독성 평가를 위한 다중벽 탄소나노튜브의 에어로졸 발생장치 개발 및 성능 평가)

  • Lee, Gun-Ho;Jeon, Ki Soo;Yu, Il Je;Ahn, Kang-Ho
    • Particle and aerosol research
    • /
    • v.9 no.4
    • /
    • pp.231-238
    • /
    • 2013
  • Carbon nanotubes (CNTs) are one of the nanomaterials that were discovered by Iijima in 1991 for the first time. CNTs have long cylindrical and axi-symmetric structures. CNTs are made by rolling graphene sheets. Because of their large length-to-diameter ratio, they are called nanotubes. CNTs are categorized as single-walled carbon nanotubes (SWCNTs) or multi-walled carbon nanotubes (MWCNTs) based on the shell structures. CNTs are broadly used in various fields, such as scanning probe microscopy, ultra fine nano balance and medicine, due to their extraordinary thermal conductivity, electrical and mechanical properties. Because long, straight CNTs have the same shape as asbestos, which cause cancer in cells lining the lung, there have been many studies on the effects of MWCNTs on human health that have been conducted. Stable atomization of CNTs is very important for the estimation of inhalation toxicity. In the present study, electro-static assisted axial atomizer (EAAA), which is the instrument that uses MWCNTs and aerosolizes them by transforming the single fiber shape using ultrasonic dispersion and electric field, was invented. EAAA consists of a ultrasonic bath for dispersion of MWCNTs and a particle generator for atomizing single fibers. The performance evaluation was conducted in order to assess the possibilities of 6-hour straight atomization with stability, which is the suggested exposure time in a day for the estimation of inhalation toxicity.

Metal Grids Embedded Transparent Conductive Electrode with Flexibility and Its Applications

  • Jung, Sunghoon;Lee, Seunghun;Kim, Jong-Kuk;Kang, Jae-Wook;Kim, Do-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.314-314
    • /
    • 2013
  • Recently, flexibility is one of the hottest issues in the field of electronic devices. For flexible displays or solar cells, a development of transparent conductive electrodes (TCEs) with flexibility, bendability and foldability is an essential element. Hundreds of nanometers indium-tin-oxide (ITO) films have been widely used and commercialized as a transparent electrode, but their brittleness make them difficulty to apply flexible electronics. Many researchers have been studying for flexible TCEs such as a few layers of graphene sheets, carbon nanotube networks, conductive polymer films and combinations among them. Although gained flexibility, their transmittance and resistivity have not reached those of commercialized ITO films. Metal grids electrode cannot act as TCEs only, but they can be used to lower the resistance of TCEs with few losses of transmittance. However, the possibility of device shortage will be rise at the devices with metal grids because a surface flatness of TCEs may be deteriorated when metal grids are introduced using conventional methods. In our research, we have developed hybrid TCEs, which combined tens of nanometers ITO film and metal grids which are embedded in flexible substrate. They show $13{\Omega}$/${\Box}f$ sheet resistance with 94% of transmittance. Moreover, the sheet resistance was maintained up to 1 mm of bending radius. Also, we have verified that flexible organic light emitting diodes and organic solar cells with the TCEs showed similar performances compared to commercial ITO (on glass substrate) devices.

  • PDF

Free vibration of sandwich micro-beam with porous foam core, GPL layers and piezo-magneto-electric facesheets via NSGT

  • Mohammadimehr, Mehdi;Firouzeh, Saeed;Pahlavanzadeh, Mahsa;Heidari, Yaser;Irani-Rahaghi, Mohsen
    • Computers and Concrete
    • /
    • v.26 no.1
    • /
    • pp.75-94
    • /
    • 2020
  • The aim of this research is to investigate free vibration of a novel five layer Timoshenko microbeam which consists of a transversely flexible porous core made of Al-foam, two graphen platelets (GPL) nanocomposite reinforced layers to enhance the mechanical behavior of the structure as well as two piezo-magneto-electric face sheets layers. This microbeam is subjected to a thermal load and resting on Pasternak's foundation. To accomplish the analysis, constitutive equations of each layer are derived by means of nonlocal strain gradient theory (NSGT) to capture size dependent effects. Then, the Hamilton's principle is employed to obtain the equations of motion for five layer Timoshenko microbeam. They are subsequently solved analytically by applying Navier's method so that discretized governing equations are determined in form of dynamic matrix giving the possibility to gain the natural frequencies of the Timoshenko microbeam. Eventually, after a validation study, the numerical results are presented to study and discuss the influences of various parameters such as nonlocal parameter, strain gradient parameter, aspect ratio, porosity, various volume fraction and distributions of graphene platelets, temperature change and elastic foundation coefficients on natural frequencies of the sandwich microbeam.

Field Emission Properties of Multiwalled Carbon Nanotubes Synthesized by Pin-to-Plate Type Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition (Pin-to-plate Type 대기압 PECVD 방법을 이용해 성장된 다중벽 탄소나노튜브의 전계방출 특성연구)

  • Park Jae-Beom;Kyung Se-Jin;Yeom Geun-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.374-379
    • /
    • 2006
  • In this study, carbon nanotubes (CNTs) were grown on glass substrates coated with Ni/Cr by an atmospheric pressure plasma enhanced chemical vapor deposition(AP-PECVD) and their structural and electrical characteristics were investigated as a possible application to the field emitter of field emission display (FED) devices. The substrate temperature ($400{\sim}500^{\circ}C$) were varied and the grown CNTs were multi wall CNTs (at $500^{\circ}C$, 15 - 20 layers of graphene sheets, distance of each layer : 0.3nm, inner diameter: 10 - 15nm, outer diameter: 30 - 40nm). The ratio of defective carbon peak to graphite carbon peak of the CNTs grown at $500^{\circ}C$ (C measured by fourier transform(FT)-Raman was 0.772 $I_D / I_G$ ratio. When field emission properties were measured, the turn-on field was $2.92V/{\mu}m$ and the emission field at $1mA/cm^2$ was $5.325V /{\mu}m$.