• Title/Summary/Keyword: graphene oxide (GO)

Search Result 236, Processing Time 0.026 seconds

Synthesis and Characterization of Hydrotalcite/Graphene Oxide Containing Benzoate for Corrosion Protection of Carbon Steel

  • Nguyen, Thuy Duong;Tran, Boi An;Vu, Ke Oanh;Nguyen, Anh Son;Trinh, Anh Truc;Pham, Gia Vu;To, Thi Xuan Hang;Phan, Thanh Thao
    • Corrosion Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.82-88
    • /
    • 2020
  • This work examined the corrosion protection performance of benzoate loaded hydrotalcite/graphene oxide (HT/GO-BZ) for carbon steel. HT/GO-BZ was fabricated by the co-precipitation method and characterized by infrared spectroscopy, X-ray diffraction, and scanning electronic microscopy. The corrosion inhibition action of HT/GO-BZ on carbon steel in 0.1 M NaCl solution was evaluated by electrochemical measurements. The benzoate content in HT/GO-BZ was determined by UV-Vis spectroscopy. Subsequently, the effect of HT/GO-BZ on the corrosion resistance of the water-based epoxy coating was investigated by the salt spray test. The obtained results demonstrated the intercalation of benzoate and GO in the hydrotalcite structure. The benzoate content in HT/GO-BZ was about 16%. The polarization curves of the carbon steel electrode revealed anodic corrosion inhibition activity of HT/GO-BZ and the inhibition efficiency was about 95.2% at a concentration of 3g/L. The GO present in HT/GO-BZ enhanced the inhibition effect of HT-BZ. The presence of HT/GO-BZ improved the corrosion resistance of the waterborne epoxy coating.

Size sorting of chemically modified graphene nanoplatelets

  • Han, Joong Tark;Jang, Jeong In;Kim, Sung Hun;Jeong, Seung Yol;Jeong, Hee Jin;Lee, Geon-Woong
    • Carbon letters
    • /
    • v.14 no.2
    • /
    • pp.89-93
    • /
    • 2013
  • Size-sorted graphene nanoplatelets are highly desired for fundamental research and technological applications of graphene. Here we show a facile approach for fabricating size-sorted graphene oxide (GO) nanoplatelets by a simple centrifugal method using different dispersion solvents. We found that the small-sized GO nanoplatelets were more effectively separated when dispersed in water or dimethylformamide (DMF) than in an alkali aqueous solution. After several iterations of the centrifugation, the sizes of GO in the supernatant solution were mostly several micrometers. We found that the GO area was not strongly correlated with the C-O content of the GO dispersed in water. However, the size-sorted GO nanoplatelets in DMF showed different C-O content, since DMF can reduce GO nanoplatelets during exfoliation and centrifugation processes.

Synthesis of Thermally Reduced Graphene Sheets Using Poly(ionic liquid)

  • Lee, Hyun-Wook;Kim, Tae-Young;Suh, Kwang-S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.256-256
    • /
    • 2010
  • It is demonstrated that graphene sheets are produced via thermal reduction of graphene oxide (GO) in the presence of imidazoium-based poly (ionic liquid) (PIL). PILs plays an important role in minimizing the reduction time and dispersing graphene sheets in organic solvents. In addition, as-obtained graphene sheets are found to be functionalized with PIL molecules by the strong interaction of PIL and the graphene, as analyzed by various physical methods such as atomic force microscopy (AFM), X-ray photoelectric spectroscopy (XPS) and Raman spectroscopy. Such a strong interaction allows the successful production of graphene/PIL composites, in which their electrical properties are controllable by the loading level of graphene in the PIL matrix.

  • PDF

Graphene nanosheets encapsulated poorly soluble drugs with an enhanced dissolution rate

  • Shen, Shou-Cang;Ng, Wai Kiong;Letchmanan, Kumaran;Lim, Ron Tau Yee;Tan, Reginald Beng Hee
    • Carbon letters
    • /
    • v.27
    • /
    • pp.18-25
    • /
    • 2018
  • In this study, graphene oxide(GO) was used as drug carriers to amorphize poorly watersoluble drugs via a co-spray drying process. Two poorly water-soluble drugs, fenofibrate and ibuprofen, were investigated. It was found that the drug molecules could be in the graphene nanosheets in amorphous or nano crystalline forms and thus have a significantly enhanced dissolution rate compared with the counterpart crystalline form. In addition, the dissolution of the amorphous drug enwrapped with the graphene oxide was higher than that of the amorphous drug in activated carbon (AC) even though the AC possessed a larger specific surface area than that of the graphene oxide. The amorphous formulations also remained stable under accelerated storage conditions ($40^{\circ}C$ and 75% relative humidity) for a study period of 14 months. Therefore, graphene oxide could be a potential drug carrier and amorphization agent for poorly water-soluble drugs to enhance their bioavailability.

A Study on Synthesis of Polyurethane/Functionalized Graphene Nanocomposites by In-situ Intercalation Method (In-situ 법에 의한 폴리우레탄/기능화 된 그래핀 나노복합체의 합성에 관한 연구)

  • Hwang, Soo-Ok;Lee, Byung-Hwan;Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.47 no.3
    • /
    • pp.238-245
    • /
    • 2012
  • Graphene oxide was synthesized from natural graphite, and its surface was modified using diisocyanatodicyclohexylmethane( $H_{12}MDI$). Isocyanate-graphene sheet(i-RGO) was obtained by reduction of surface modified GO. To select nanofiller having good dispersion with polyurethane, GO, i-RGO, natural graphite and thermal reduced graphite were analyzed, and then i-RGO was selected as a suitable nanofiller. PU/i-RGO nanocomposite was synthesized with various i-RGO contents to estimate effect of reinforcement on nanocomposite. Thermal stability, hardness, contact angle were increased with i-RGO contents due to i-RGO characteristic and crosslink bridge effect. But, tensile strength and elongation were decreased at i-RGO contents more than the 4 wt%. This phenomenon was interpreted by the excess formation of crosslink bridge.

Investigation on the Thermoelectric Properties of Bismuth Telluride Matrix Composites by Addition of Graphene Oxide Powders (그래핀 산화물 분말 첨가에 의한 비스무스 텔루라이드 기지 복합재료의 열전에너지변환 특성 고찰)

  • Kim, Kyung Tae;Min, Taesik;Kim, Dong Won
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.263-269
    • /
    • 2016
  • Graphene oxide (GO) powder processed by Hummer's method is mixed with p-type $Bi_2Te_3$ based thermoelectric materials by a high-energy ball milling process. The synthesized GO-dispersed p-type $Bi_2Te_3$ composite powder has a composition of $Bi_{0.5}Sb_{1.5}Te_3$ (BSbT), and the powder is consolidated into composites with different contents of GO powder by using the spark plasma sintering (SPS) process. It is found that the addition of GO powder significantly decreases the thermal conductivity of the pure BSbT material through active phonon scattering at the newly formed interfaces. In addition, the electrical properties of the GO/BSbT composites are degraded by the addition of GO powder except in the case of the 0.1 wt% GO/BSbT composite. It is found that defects on the surface of GO powder hinder the electrical transport properties. As a result, the maximum thermoelectric performance (ZT value of 0.91) is achieved from the 0.1% GO/BSbT composite at 398 K. These results indicate that introducing GO powder into thermoelectric materials is a promising method to achieve enhanced thermoelectric performance due to the reduction in thermal conductivity.

Water-Soluble Conjugated Polymer and Graphene Oxide Composite Used as an Efficient Hole-Transporting Layer for Organic Solar Cells (수용성 공액고분자/그래핀 옥사이드 복합체를 이용한 유기태양전지의 정공수송층에 대한 연구)

  • Kim, Kyu-Ri;Oh, Seung-Hwan;Kim, Hyun Bin;Jeun, Joon-Pyo;Kang, Phil-Huyn
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.38-42
    • /
    • 2014
  • The poly[(9,9-bis((6'-(N,N,N-trimethylammonium)hexyl)-2,7-fluorene)-alt-(9,9-bis(2-(2-(2-methoxyethoxy)ethoxy)ethyl)-9-fluorene)) dibromide (WPF-6-oxy-F)] and graphene oxide (GO) was blended and irradiated with gamma ray under ambient condition. This WPF-6-oxy-F-GO composite was investigated as a hole-transporting layer (HTL) in organic solar cells (OSCs). Compared with the pristine GO, the sheet resistance ($R_{sheet}$) of irradiated WPF-6-oxy-F-GO was decreased about 2 orders of magnitude. The reason for the decrease of $R_{sheet}$ is the effect of efficient ${\pi}-{\pi}$ packing resulted from the formation of C-N bond between WPF6-oxy-F and GO. As a result, the efficiency of OSCs was dramatically enhanced ~ 6.10% by introducing irradiated WPF-6-oxy-F-GO as a HTL. WPF-6-oxy-F-GO is a sufficient candidate for HTL to facilitate the low-cost and high efficiency OSCs.

A review: synthesis and applications of graphene/chitosan nanocomposites

  • Yuan, Hui;Meng, Long-Yue;Park, Soo-Jin
    • Carbon letters
    • /
    • v.17 no.1
    • /
    • pp.11-17
    • /
    • 2016
  • Recently, with continuous developments in the field of materials science, graphene oxide (GO) has emerged as a promising material with excellent electrical, thermal, mechanical, and optical properties, which play important roles in most fields. Researchers have achieved considerable progress with graphene. Chitosan (CS) is a natural polymer that has been studied intensively owing to its specific formation, high chemical resistance, and excellent physical properties. These outstanding properties have led to its universal use in applications such as textile fabrics, tissue engineering, medicine and health, coatings, and paints. By combining the advantages of GO and CS, different types of promising materials can be obtained. This review discusses the preparation of GO-CS fibers, hydrogel and aerogel, and the applications of GO-CS nanocomposites. In addition, directions for future research on graphene material composites are discussed.

Graphene oxide dispersed polyvinyl chloride/alkyd green nanocomposite film: Processing and physico-mechanical properties

  • Yadav, Mithilesh;Ahmad, Sharif;Chiu, Fang-Chyou
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.246-256
    • /
    • 2018
  • Graphene oxide (GO) reinforced Polyvinyl chloride (PVC)-Waterborne Castor Alkyd (WCA) nanocomposites (PVC/WCA/GO) films were processed through solution blending technique. TGA showed that the thermal stability of PVC/WCA/GO-0.5 films was better than that of PVC/WCA blend film. With incorporation of 0.5 wt.% GO, the tensile strength and elastic modulus of the blend nanocomposite have significantly improved by about 260% and 185%, respectively, compared with neat polymer. The physicomechanical properties of these films suggest that the PVC/WCA/GO nanocomposite films may have a potential scope for their application in packaging industries. The results are supported by characterizations like FTIR, XRD, TEM and FESEM.

Study of Electrochemical Cs Uptake Into a Nickel Hexacyanoferrate/Graphene Oxide Composite Film

  • Choi, Dongchul;Cho, Youngjin;Bae, Sang-Eun;Park, Tae-Hong
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • We investigated the electrochemical behavior of an electrode coated with a nickel hexacyanoferrate/graphene oxide (NiPB/GO) composite to evaluate its potential use for the electrochemical separation of radioactive Cs as a promising approach for reducing secondary Cs waste after decontamination. The NiPB/GO-modified electrode showed electrochemically switched ion exchange capability with excellent selectivity for Cs over other alkali metals. Furthermore, the repetitive ion insertion and desertion test for assessing the electrode stability showed that the electrochemical ion exchange capacity of the NiPB/GO-modified electrode increased further with potential cycling in 1 M of $NaNO_3$. In particular, this electrochemical treatment enhanced Cs uptake by nearly two times compared to that of NiPB/GO and still retained the ion selectivity of NiPB, suggesting that the electrochemically treated NiPB/GO composite shows promise for nuclear wastewater treatment.