Browse > Article
http://dx.doi.org/10.7317/pk.2014.38.1.38

Water-Soluble Conjugated Polymer and Graphene Oxide Composite Used as an Efficient Hole-Transporting Layer for Organic Solar Cells  

Kim, Kyu-Ri (Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI))
Oh, Seung-Hwan (Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI))
Kim, Hyun Bin (Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI))
Jeun, Joon-Pyo (Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI))
Kang, Phil-Huyn (Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI))
Publication Information
Polymer(Korea) / v.38, no.1, 2014 , pp. 38-42 More about this Journal
Abstract
The poly[(9,9-bis((6'-(N,N,N-trimethylammonium)hexyl)-2,7-fluorene)-alt-(9,9-bis(2-(2-(2-methoxyethoxy)ethoxy)ethyl)-9-fluorene)) dibromide (WPF-6-oxy-F)] and graphene oxide (GO) was blended and irradiated with gamma ray under ambient condition. This WPF-6-oxy-F-GO composite was investigated as a hole-transporting layer (HTL) in organic solar cells (OSCs). Compared with the pristine GO, the sheet resistance ($R_{sheet}$) of irradiated WPF-6-oxy-F-GO was decreased about 2 orders of magnitude. The reason for the decrease of $R_{sheet}$ is the effect of efficient ${\pi}-{\pi}$ packing resulted from the formation of C-N bond between WPF6-oxy-F and GO. As a result, the efficiency of OSCs was dramatically enhanced ~ 6.10% by introducing irradiated WPF-6-oxy-F-GO as a HTL. WPF-6-oxy-F-GO is a sufficient candidate for HTL to facilitate the low-cost and high efficiency OSCs.
Keywords
water-soluble conjugated polymer; graphene oxide; organic solar cells; hole-transporting layer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. S. Huang, C. Y. Chou, and C. F. Lin, Sol. Energy Mater. Sol. Cells, 94, 182 (2010).   DOI   ScienceOn
2 K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, Chem. Rev., 107, 1233 (2007).   DOI   ScienceOn
3 C. H. Hsieh, Y. J. Cheng, P. J. Li, C. H. Chen, M. Dubosc, R. M. Liang, and C. S. Hsu, J. Am. Chem. Soc., 132, 4887 (2010).   DOI   ScienceOn
4 L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, Adv. Mater., 12, 481 (2000).   DOI
5 Y. Kim, A. M. Ballantyne, J. Nelson, and D. D. C. Bradley, Org. Electron., 10, 205 (2009).   DOI   ScienceOn
6 V. Shrotriya, G. Li, Y. Y. Yao, C. W. Chu, and Y. Yang, Appl. Phys. Lett., 88, 073508 (2006).   DOI   ScienceOn
7 H.-H. Liao, L.-M. Chen, Z. Xu, G.. Li, and Y. Yang, Appl. Phys. Lett., 92, 173303 (2008).   DOI   ScienceOn
8 C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, Appl. Phys. Lett., 97, 043311 (2009).
9 K. Shankar, G. K. Mor, H. E. Prakasam, O. K. Varghese, and G. A. Grimes, J. Non-Cryst. Solids, 354, 2767 (2008).   DOI   ScienceOn
10 M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, Appl. Phys. Lett., 89, 143517 (2006).   DOI   ScienceOn
11 M. Jorgensen, K. Norrman, and F. C. Krebs, Sol. Energy Mater. Sol. Cells, 92, 686 (2008).   DOI   ScienceOn
12 Y. Gao, H.-L. Yip, K.-S. Chen, K. M. O’Malley, O. Acton, Y. Sun, G. Ting, H. Chen, and A. K.-Y. Jen, Adv. Mater., 23, 1903 (2011).   DOI   ScienceOn
13 W. Hong, Y. Xu, G. Lu, C. Li, and G. Shi, Electrochem. Commun., 10, 1555 (2008).   DOI   ScienceOn
14 M. A. Ali, E. Saion, N. Yahya, A. Kassim, K. M. Dahlan, and S. Hashim, JESTEC, 2, 111 (2007).
15 H. Koizumi, H. Dougauchi, T. Yamano, and T. Ichikawa, Jpn. J. Appl. Phys., 42, 7122 (2003).   DOI
16 S.-H. Oh, S.-I, Na, J. Jo, B. Lim, D. Vak, and D.-Y. Kim, Adv. Mater., 20, 1977 (2010).
17 R. Steim, F. R. Kogler, and C. J. Brabec, J. Mater. Chem., 20, 2499 (2010).   DOI   ScienceOn
18 H. Cheun, C. Fuentes-Hernandez, Y. Zhou, W. J. P-otscavage, S.-J. Kim, J. Shim, A. Dindar, and B. Kip-pelen, J. Phys. Chem. C, 114, 20713 (2010).   DOI   ScienceOn
19 J.-S. Yeo, J.-M. Yun, D.-Y. Kim, S. Park, S.-S. Kim, M.-H. Yoon, T.-W. Kim, and S.-I. Na, ACS Appl. Mater. Interfacs, 4, 2551 (2010).
20 H. L. Yip, S. K. Hau, N. S. Baek, H. Ma, and A. K.-Y. Jen, Adv. Mater., 20, 2376 (2008).   DOI   ScienceOn
21 S. T. Jung, S.-H. Oh, H. B. Kim, J.-P. Jeun, B.-J. Lee, and P.-H. Kang, J. Nanosci. Nanotechnol., 13, 7358 (2013).   DOI
22 S.-I Na, G. Wang, S.-S. Kim, T.-W. Kim, S.-H Oh, B.-K. Yu, T. Lee, and D.-Y. Kim, J. Mater. Chem., 19, 9045 (2009).   DOI   ScienceOn
23 Q. Zheng, G. Fang, F. Cheng, H. Lei, P. Quin, and C. Zhan, J. Phys. D : Appl. Phys., 46, 135101 (2013).   DOI   ScienceOn
24 A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, and D. L. Kwong, Appl. Phys. Lett., 93, 221107 (2008).   DOI   ScienceOn