• 제목/요약/키워드: graph convergence

검색결과 190건 처리시간 0.018초

GRAPH CONVERGENCE AND GENERALIZED CAYLEY OPERATOR WITH AN APPLICATION TO A SYSTEM OF CAYLEY INCLUSIONS IN SEMI-INNER PRODUCT SPACES

  • Mudasir A. Malik;Mohd Iqbal Bhat;Ho Geun Hyun
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권1호
    • /
    • pp.265-286
    • /
    • 2023
  • In this paper, we introduce and study a generalized Cayley operator associated to H(·, ·)-monotone operator in semi-inner product spaces. Using the notion of graph convergence, we give the equivalence result between graph convergence and convergence of generalized Cayley operator for the H(·, ·)-monotone operator without using the convergence of the associated resolvent operator. To support our claim, we construct a numerical example. As an application, we consider a system of generalized Cayley inclusions involving H(·, ·)-monotone operators and give the existence and uniqueness of the solution for this system. Finally, we propose a perturbed iterative algorithm for finding the approximate solution and discuss the convergence of iterative sequences generated by the perturbed iterative algorithm.

관계형데이터를 이용한 그래프 데이터베이스의 모델별 구조 분석과 쿼리 성능 비교 연구 (Structural Analysis and Performance Test of Graph Databases using Relational Data)

  • 배석민;김진형;유재민;양성열;정재진
    • 한국멀티미디어학회논문지
    • /
    • 제22권9호
    • /
    • pp.1036-1045
    • /
    • 2019
  • Relational databases have a notion of normalization, in which the model for storing data is standardized according to the organization's business processes or data operations. However, the graph database is relatively early in this standardization and has a high degree of freedom in modeling. Therefore various models can be created with the same data, depending on the database designers. The essences of the graph database are two aspects. First, the graph database allows accessing relationships between the objects semantically. Second, it makes relationships between entities as important as individual data. Thus increasing the degree of freedom in modeling and providing the modeling developers with a more creative system. This paper introduces different graph models with test data. It compares the query performances by the results of response speeds to the query executions per graph model to find out how the efficiency of each model can be maximized.

Seismic Tomography using Graph Theoretical Ray Tracing

  • Keehm, Young-Seuk;Baag, Chang-Eob;Lee, Jung-Mo
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • 제25권1호
    • /
    • pp.23-34
    • /
    • 1997
  • Seismic tomography using the graph theoretical method of ray tracing is performed in two synthetic data sets with laterally varying velocity structures. The straight-ray tomography shows so poor results in imaging the laterally varying velocity structure that the ray-traced tomographic techniques should be used. Conventional ray tracing methods have serious drawbacks, i.e. problems of convergence and local minima, when they are applied to seismic tomography. The graph theretical method finds good approximated raypaths in rapidly varying media even in shadow zones, where shooting methods meet with convergence problems. The graph theoretical method ensures the globally minimal traveltime raypath while bending methods often cause local minima problems. Especially, the graph theoretical method is efficient in case that many sources and receivers exist, since it can find the traveltimes and corresponding raypaths to all receivers from a specific source at one time. Moreover, the algorithm of graph theoretical method is easily applicable to the ray tracing in anisotropic media, and even to the three dimensional case. Among the row-active inversion techniques, the conjugate gradient (CG) method is used because of fast convergence and high efficiency. The iterative sequence of the ray tracing by the graph theoretical method and the inversion by the CG method is an efficient and robust algorithm for seismic tomography in laterally varying velocity structures.

  • PDF

디노이징 오토인코더와 그래프 컷을 이용한 딥러닝 기반 바이오-셀 영상 분할 (Bio-Cell Image Segmentation based on Deep Learning using Denoising Autoencoder and Graph Cuts)

  • 임선자;칼렙부누누;권오흠;이석환;권기룡
    • 한국멀티미디어학회논문지
    • /
    • 제24권10호
    • /
    • pp.1326-1335
    • /
    • 2021
  • As part of the cell division method, we proposed a method for segmenting images generated by topography microscopes through deep learning-based feature generation and graph segmentation. Hybrid vector shapes preserve the overall shape and boundary information of cells, so most cell shapes can be captured without any post-processing burden. NIH-3T3 and Hela-S3 cells have satisfactory results in cell description preservation. Compared to other deep learning methods, the proposed cell image segmentation method does not require postprocessing. It is also effective in preserving the overall morphology of cells and has shown better results in terms of cell boundary preservation.

An AND-OR Graph Search Algorithm Under the Admissibility Condition Relaxed

  • Lee, Chae-Y.
    • 한국경영과학회지
    • /
    • 제14권1호
    • /
    • pp.27-35
    • /
    • 1989
  • An algorithm that searches the general AND-OR graph is proposed. The convergence and the efficiency of the algorithm is examined and compared with an existing algorithm for the AND-OR graph. It is proved that the proposed algorithm is superior to the existing method both in the quality of the solution and the number of node expansions.

  • PDF

Semantic-based Mashup Platform for Contents Convergence

  • Yongju Lee;Hongzhou Duan;Yuxiang Sun
    • International journal of advanced smart convergence
    • /
    • 제12권2호
    • /
    • pp.34-46
    • /
    • 2023
  • A growing number of large scale knowledge graphs raises several issues how knowledge graph data can be organized, discovered, and integrated efficiently. We present a novel semantic-based mashup platform for contents convergence which consists of acquisition, RDF storage, ontology learning, and mashup subsystems. This platform servers a basis for developing other more sophisticated applications required in the area of knowledge big data. Moreover, this paper proposes an entity matching method using graph convolutional network techniques as a preliminary work for automatic classification and discovery on knowledge big data. Using real DBP15K and SRPRS datasets, the performance of our method is compared with some existing entity matching methods. The experimental results show that the proposed method outperforms existing methods due to its ability to increase accuracy and reduce training time.

시스템 기반 프로비넌스 그래프와 분석 기술 동향 (A Survey on system-based provenance graph and analysis trends)

  • 박찬일
    • 융합보안논문지
    • /
    • 제22권3호
    • /
    • pp.87-99
    • /
    • 2022
  • 사이버 공격이 정교해지고 고도화된 APT 공격이 증가함에 따라 공격을 탐지하고 추적하기가 더 어려워졌다. 시스템 프로비넌스 그래프는 분석가들에게 공격의 기원을 밝히기 위한 기법을 제공한다. 사이버 공격에 대한 침투 기원을 밝히기 위해서 다양한 시스템 프로비넌스 그래프 기법이 연구되었다. 본 연구에서는 다양한 시스템 프로비넌스 그래프 기법을 조사하고 데이터 수집과 분석 방법에 관련해서 기술하였다. 또한 조사 결과를 바탕으로 향후 연구 방향을 제시해 본다.

딥러닝 기술을 적용한 그래프 알고리즘 성능 연구 (Research on Performance of Graph Algorithm using Deep Learning Technology)

  • 노기섭
    • 문화기술의 융합
    • /
    • 제10권1호
    • /
    • pp.471-476
    • /
    • 2024
  • 다양한 스마트 기기 및 컴퓨팅 디바이스의 보급에 따라 빅데이터 생성이 광범위하게 일어나고 있다. 기계학습은 데이터의 패턴을 학습하여 추론을 수행하는 알고리즘이다. 다양한 기계학습 알고리즘 중에서 주목을 받는 알고리즘은 신경망 기반의 딥러닝 학습이다. 딥러닝은 다양한 응용이 발표되면서 빠른 성능 향상을 달성하고 있다. 최근 딥러닝 알고리즘 중에서 그래프 구조를 활용하여 데이터를 분석하려는 시도가 증가하고 있다. 본 연구에서는 그래프 구조를 활용하여 딥러닝 네트워크에 전달하기 위한 그래프 생성 방법을 제시한다. 본 논문은 그래프 생성 과정에서 노드의 속성과 간선의 가중치를 일반화하고 행렬화 과정을 제시하여 딥러닝 입력에 필요한 구조로 전환하는 방법을 제시한다. 그래프 생성 과정에서 속성과 가중치 정보를 보전할 수 있는 선형변환 매트릭스 적용 방법을 제시한다. 마지막으로 일반 그래프의 딥러닝 입력 구조를 제시하고 성능 분석을 위한 접근법을 제시한다.

I-QANet: 그래프 컨볼루션 네트워크를 활용한 향상된 기계독해 (I-QANet: Improved Machine Reading Comprehension using Graph Convolutional Networks)

  • 김정훈;김준영;박준;박성욱;정세훈;심춘보
    • 한국멀티미디어학회논문지
    • /
    • 제25권11호
    • /
    • pp.1643-1652
    • /
    • 2022
  • Most of the existing machine reading research has used Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN) algorithms as networks. Among them, RNN was slow in training, and Question Answering Network (QANet) was announced to improve training speed. QANet is a model composed of CNN and self-attention. CNN extracts semantic and syntactic information well from the local corpus, but there is a limit to extracting the corresponding information from the global corpus. Graph Convolutional Networks (GCN) extracts semantic and syntactic information relatively well from the global corpus. In this paper, to take advantage of this strength of GCN, we propose I-QANet, which changed the CNN of QANet to GCN. The proposed model performed 1.2 times faster than the baseline in the Stanford Question Answering Dataset (SQuAD) dataset and showed 0.2% higher performance in Exact Match (EM) and 0.7% higher in F1. Furthermore, in the Korean Question Answering Dataset (KorQuAD) dataset consisting only of Korean, the learning time was 1.1 times faster than the baseline, and the EM and F1 performance were also 0.9% and 0.7% higher, respectively.

CONVERGENCE OF A GENERALIZED BELIEF PROPAGATION ALGORITHM FOR BIOLOGICAL NETWORKS

  • CHOO, SANG-MOK;KIM, YOUNG-HEE
    • Journal of applied mathematics & informatics
    • /
    • 제40권3_4호
    • /
    • pp.515-530
    • /
    • 2022
  • A factor graph and belief propagation can be used for finding stochastic values of link weights in biological networks. However it is not easy to follow the process of use and so we presented the process with a toy network of three nodes in our prior work. We extend this work more generally and present numerical example for a network of 100 nodes.