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An AND-OR Graph Search Algorithm
Under the Admissibility Condition Relaxed

Chae Y. Lee*

ABSTRACT

An algorithm that searches the general AND-OR graph is proposed. The convergence and the efficiency
of the algorithm is examined and compared with an existing algorithm for the AND-OR graph. It is proved
that the proposed algorithm is superior to the existing method both in the quality of the solution and the

number of node expansions.

1. Introduction

The research on the AND-OR graph 12, 4, 5] has provided an important background for the
problem solving and the knowledge representation in artificial inteligence. As an example, the
behavior of a rule based system that works by problem decomposition can be represented by
the AND-OR graph. The problem decomposition is performed by splitting the high-level goals
into a series of subgoals that must be achieved. Each of the subgoals may have their own asso-
ciated subgoals and so on. The nodes in the graph correspond to the states of working memory,
while links correspond to possible rule applications.

In the literature on the AND-OR graph, it is customary to place certain restriction on the
heuristic estimates of nodes in the search graph. Bagchi and Mahanti [1], however, compare
several algorithms for searching OR graphs [1, 3, 5. that has no restriction on the heuristic
estimates. They prove that the suggested algorithm is superior to the other cnes when applied
to the OR graph with no such restriction.

This paper provides a serach algorithm that works efficiently on the AND-OR graph that has
no restriction on the heuristic estimates. The performance of the algorithm will also be exami-
ned by comparing it with an existing algorithm which is known to be one of the best.

2. AND-OR Graph Search Algorithms

Consider an AND-OR graph G in which each node of the graph represents a problem state-
ment. A problem and its subproblems are linked bv arcs pointing from the node representing
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the problem to the nodes representing its subproblems. A Boolean function is employed in dis-
junctive normal form [3] to represent the relationship between a problem and its subproblems.
A proposition N is denoted as the problem statement corresponding to a node n. An example
of the AND-OR graph is shown in Figure 1. In the graph, the original problem § is decomposed
into A, B and C. The relationship between the initial problem and its subproblems are expres-
sed as follows -

S=AvBC
=Dv(EVF)G
= DvE(UVK)vF(WK)
=DvEJVEKVHIIVHIK

For the development of the AND-OR graph search algorithms a directed graph G with g star-
ting nodes s, . s, and a set of goal nodes is considered. Each arc in G is assumed to have

a positive are cost ¢(m, n) and c(m, n)=§>0, where & is a given small positive real number.
In the graph, we are interested in finding a minimum cost path from starting nodes to goal
nodes. Associated with each node n in G nonnegative heuristic estimates are employed in the
search process. Before introducting the heuristic estimates we consider the following defini-
tions -

Definition 1 Let n be a node in an AND-OR graph. Suppose n is related to its immediate succe-
ssor nodes by a Boolean function

N=C,v(: veevC, ,
where C, i=1. -+, m, are conjunctions of propositions. Then each Ciis called an immediate imp-
licant of N.
Definition 2 Let a conjunction Q=N, - N,. where r=1. Then Q' is said to be an immediate

implicant of Q iff Q" is a conjunction obtained from Q by replacing an N by one of its immediate
implicants, 1=k =r.

Definition 3 A conjunction Q is an implicant of a conjunction P iff there is a sequence of conju-
nctions R, R., -, R,such that P=R, Q=R,. and R is an immediate implicant of R. ;for /=2,

R

The algorithm that will be presented in this paper is based upon an evaluation function fP)
for each implicant P of S which is the initial problem associated with the Q starting nodes. This
£(P) can be written as f(P) =g(P)+h(P), where if P=N, - N.. then g(P) is the cost of a mini-
mal path graph from s,, -, s,to the nodes n,, -, n.. and h(P) is the cost of a minimal solution
graph started with n,. ==, n.. Since f(P) is not known in general, we make use of an estimate
F(P)=g(P)+h(P) of f{P). where g(P) and A(P) are the estimates of g(P) and h(P).

In most of the previous research on the AND-OR graph, it is customary to assume that the
heuristic estimate / satisfies the admissibility condition given below.

Definition 4 The heuristic estimate / is admissible if for every conjunction P in the search



graph G, h(P) =h(p).

In this paper, however, a general case of AND-OR graph is considered. In other words, a graph
with no restriction on the heuristic estimates is taken into consideration. An algorithm by Chang
and Slagle [2] and a modified version of the algorithm are now presented as follows -

AND-OR graph search Algorithm A0 by Chang & Slagle [2]

Step 1 Let W={S}, R=¢ and f(S)=0.

Step 2 Calculate f for each element in the set W. Select a P in W such that f(P) is smal-
lest. Resolve ties arbitrarily, but always in favor of an element of W which is a conjunction
of propositions associated with terminal nodes.

Step 3 Let P=P, - P., where P.is the proposition associated with the node p,, i=1 -
r. If p;, ==, p. are terminal nodes, terminate 40 ; a solution graph has been found. Other-
wise, go to the next step.

Step 4 If P is already expanded, go to Step 6. Otherwise, go to the next step.

Step 5 Expand all the unexpanded non-terminal nodes of p,, . p..
Step 6 Let V be the set of all the implicants of S constructed from P=P, -+ P, by replacing
each (non-terminal) P. by one of its immediate implicants, i=1. -, r. Let R=RU{P}.

Step 7 Let W=(WuUV)—R If W is empty, terminate AQ; there is no solution graph.
Otherwise, go to Step 2.

Figure 1



Algorithm MAO for the AND-OR graph
Same as the algorithm A0 by Chang & Slagle. except for Step 1 and Step 2. which are to be

replaced by the steps given below.

Step 1 Let W=S and R=¢ f(S)=0. F< 0.

Step 2 Calculate f(Q) for each element Q in W. If there are some implicants in W with
f=F. select among them a P such that 2(P) is smallest. Otherwise. consider those implica-
nts in W with minimal / value, select among them a P such that g(P) is smallest, and set

F<1(p).

Example 1 An AND-OR graph is shown in Figure 1 to illustrate the Algorithm MAQ. In Figure
1 the number beside each node n is the estimated cost F(NY of h(N) and the one beside each
are is the arc cost. The estimated cost is defined as h(P)= 21 [e(P. N)+HN)] for P=N

N.. Clearly, the admissibility condition is relaxed in the graph. We now describe how the
algorithm is applied to obtain a minimal solution graph in the following -

(1) Exanding the node s, we obtain W=1{4. 8C}. From F4) =) +h(4)=9+7=16 and 7
(BC)=g(BC) +h(BC)=6+10=16, we choose FG for expansion since 2(BC) <g(A4).

(2) Since BC=(E+F)G=EG+FG, we obtain W=1{4, EG. FG}. We also have HEG)=1]+4=
15 and JIFG) =8+8=16. Since F=16, we chcose FG for expansion.

(3) Expanding FG, we obtain FG= HIU+K)= HIJ+ HIK. We have W={4, £G. Hl. HIK} Si-
nce fUHID =13+0=13 and f(HIK)=2+0=1., we choose EG for expansion whose g value is
the smallest among the conjunctions with e

(4) Expanding E£G. we have EG=E(U+K)=FJ/+EK and W=14, EJ EK. HIJ HIK|. Since [
(EJ)=14+0=14 and f(EK)=13+0=13, we choose A.

(5) By expanding A4 we have W=D, EJ. EK HIJ. HIK}. Since fD)=16+0=16 we choose
HIK.

(6) We terminate the algorithm since h, i, and k are terminal nodes. The cost of the solution
graph is /2 which is true minimal.

Note that the algorithm AO gives output /6 or /3 for the same search graph shown in Figure
1. Since algorithm A0 chooses a conjunction with smallest f value at each iteration, it is termi-
nated with D or EK. For the search graph Algorithm MAQO gives better solution than Algorithm
A40. 1s it the case that the result of Algorithm WAQ is always at least as good as that of Algori-
thm A0 ? We will show in Section 4 that it s indeed so.

3. Convergence of the Algorithm MAO

We here dicuss the convergence of the algorithm in the AND-OR graph where the admissibi-
lity condition is relaxed

Definition 5

(i) A Solution path is a path in an AND-OR graph G from the starting nodes s,. =, 8, 1O
the goal nodes.



(ii) Let 4,, 4., - be the solution paths in G. We write P ¢ 4, if nodes p.. -, p. lies on
the solution path A4, for each i, let M, be

M =max [C(4, P)+h(P)]
peA,

where ¢(4,, P) is the cost of the path A, from s,. *, 5, to p,. =, P
(iii) Define T as follows :

T=min M,
=1

(iv) Let ;. A:, -, A, for some k /. be the minimal-cost solution paths in G. Define 7.,
as follows :

T, — min MM,
I=j=k

(v) The set of conjunctions Z is defined as follows :

(a) S ¢ 7
(h) P g Z if there is a path A from s, -, s to pr.oo,poosuch that ¢(d4, P)+Hh(P)<T
and the immediate predecessor of p,. ***, p. on 4 is in Z

(vi) Let N be the number of conjunctions in Z.
Example 2 The solution paths of the AND-OR graph in Figure 1 are

A, =sad.
A- =s(be) (cgj).
A =s(he) (cgh),
A =sbhXi)) (cgj).
and A« =s(bAnND)) (cghk).
where the nodes in the parethesis are in the AND relationship. We obtain

T=min {/6. 16, 16, 17 17}=16
and T.,.,=17

The value of T is determined by any one of the three paths 4,, 4 and A. and that of T,
is by the path A< which is the minimal cost solution path. We also have

Z={4. D, BC EG EJ EK. FG. HIJ HIK}
and N=1Z i =9

Lemma 1 At any step before Algorithm MAO terminates there is a conjunction P ¢ W such
that 7(P) =T,

Proof At any step before Algorithm MAQ terminates, W contains at least one conjunction from



every solution path. Consider a solution path A4 that determines the value of 7. Then there is
a conjunction P on 4 which is in W all of whose predecessors on A have already been expan-
ded. Clearly, 2(P)<c¢(4, P) and F(P)=g(P)+h(P) C(A P)+h(P)=T. So fp=T

Theorem 1 Algorithm MAQ terminates successfully, that is, it finds a set of goal nodes.
Proof By Lemma 1 W always contains a conjunction P such that F(P)<T. Since we have assu-
med that the cost of an arc is = &, where & is a small positive real number, it follows that
the search graph has only finitely many paths starting from S with cost = 7. As A values are
nonnegative, by Lemmal 1 Algorithm MAO can not continue forever.

For the convergence of the Algorithm 40 Chang and Slagle [2] proved that it terminates at
a minimal solution graph under the assumption that the admissibility condition is satisfied. Ho-

wever, the convergence is not guaranteed when the admissibility condition is relaxed.

4. Efficiency of the Algorithm MAO

In this section we analyze and compare the performance of the two algorithms. For that pur-
pose the following two factors are considered as in Bagchi and Mahanti [1]:
(i) Quality of the solution - Since neither of the algorithms may give the minimal cost solu-
tion, it would be of interest to know which one gives the best solution.
(ii) Number of node expansions : This measure is expressed in terms of N, since only nodes
in Z get expanded.

Definition 6
(i) Let
S =£0 e e fN azl

be the time sequence of f values of nodes selected for expansion by Algorithm 40. Similarly,

let
S Vo :.f’\!lll) .f.ll—l{:) ...fm(z bgl-
Note that f*% =f, and f™¢ =f;.
(i) Let
Fiw = max 7,
1=i=a
Fh%l = max f™9.
1=i=bh

(iii) Let G denote as much of the search graph G as has been expanded by Algorithm 40
when it executes step 3 for the ith time. Each node in G ' is assumed to have associa-
ted with it the following attributes :

(a) Its current g value. h value, and 7 value.
(b) A4 set W or R, indicating whether it is currently in the set W or R
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G '7 just has the single conjunction S and no arcs. The G ., is used to represent

the situation at termination, that is, after the goal node has been selected from W and
put in R Thus G*7.; and G differ only in that the goal node is in W in G  and
inRinG".,.

Example 3 Figure 2 represents G '7 for the search graph G of Figure 1.

Conjunction g h 7 W or R
S 0 0 0 R
c A 9 7 16 w
BC 6 10 16 R
EG 11 4 15 R
FG 8 8 16 14
& EJ 14 0 14 14
EK 13 0 13 w
Figure 2
Definition 4
Let
SO =% % - fN . uzl,

be the strictly increasing subsequence of f values in S*. Similary, let
S AL} :f‘.‘\l,d{’)' f'.ll.l(l‘ e f“\lﬂ) 1/,21
be the strictly increasing subsequence of f values in S **
Lemma 2 Every AND-OR graph can be transformed into a pure OR graph.

Proof Every node except the goal nodes in the AND-OR graph is represented by the Boolean
function as the disjunctive normal form of the immediate implicants. Thus, the Lemma is true
regardless of the estimates g(P) and A(P) in the AND-OR graph.

Example 4 The transformation of the AND-OR graph (see Figure 1) into a pure OR graph is
illustrated in Figure 3. In the transformation the following estimates are used :

hP)= % hN)
and g(P)= X g(N,)

where P=N,N. - N,
Theorem 2 Algorithm A0 makes O(2") node expantions at worst.

Proof Clear from Lemma 2 and Theorem 3.1 of Martelli [3].



Figure 3

Theorem 3 Algorithm MAOQO makes O(N') noce expantions at worst.

Proof Clear from Lemma 2 and Theorem 4.1 «f Martelli [3_ by considering strictly increasing
f subsequence when b=j, . When b>j.. since we choose conjunction P with ¢ value smallest

among those with f=F the conjunction P cannot be reopened between the two conjunctions
]:.& and ‘ﬁ /-

Theorem 4 Algorithm A0 [3] never gives a sclution of lower cost than that given by Algorithm
MAO assuming identical resolution of ties.

Proof Clear from Lemma 2 and the proof of Theorem 3.5 of Bagchi and Mahanti (1]. Only ob-

serve that ]SF " . since the time sequence of f values are strictly increasing by the Algorithm
AO.

5. Conclusion

A modified version of the AND-OR graph search algorithm (Algorithm MAQ) is presented.
The algorithm deals with the general case of AND-OR. In other words, Algorithm MAQ provides
a good solution even if the heuristic estimates does not satisfy the admissibility condition of
the usual AND-OR graph.

It is proved that the algorithm converges to a set of goal nodes even though it is not optimal.
The performance of the algorithm is compared with a well-known AND-OR graph search algori-
thm (Algorithm 40). It is proved that the quality of the solution by MAO is at least as good
as that by the Algorithm AO. It is also proved that Algorithm MAO makes only O(N") node
expansions while Algorithm 40 makes 0(2*) node expansions.
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