• Title/Summary/Keyword: graph $C^*$-algebra

Search Result 5, Processing Time 0.018 seconds

EXTREMALLY RICH GRAPH $C^*$-ALGEBRAS

  • Jeong, J.A
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.3
    • /
    • pp.521-531
    • /
    • 2000
  • Graph C*-algebras C*(E) are the universal C*-algebras generated by partial isometries satisfying the Cuntz-Krieger relations determined by directed graphs E, and it is known that a simple graph C*-algebra is extremally rich in sense that it contains enough extreme consider a sufficient condition on a graph for which the associated graph algebra(possibly nonsimple) is extremally rich. We also present examples of nonextremally rich prime graph C*-algebras with finitely many ideals and with real rank zero.

  • PDF

ON THE STABILITY OF A FIXED POINT ALGEBRA C*(E)γ OF A GAUGE ACTION ON A GRAPH C*-ALGEBRA

  • Jeong, Ja-A.
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.657-673
    • /
    • 2009
  • The fixed point algebra $C^*(E)^{\gamma}$ of a gauge action $\gamma$ on a graph $C^*$-algebra $C^*(E)$ and its AF subalgebras $C^*(E)^{\gamma}_{\upsilon}$ associated to each vertex v do play an important role for the study of dynamical properties of $C^*(E)$. In this paper, we consider the stability of $C^*(E)^{\gamma}$ (an AF algebra is either stable or equipped with a (nonzero bounded) trace). It is known that $C^*(E)^{\gamma}$ is stably isomorphic to a graph $C^*$-algebra $C^*(E_{\mathbb{Z}}\;{\times}\;E)$ which we observe being stable. We first give an explicit isomorphism from $C^*(E)^{\gamma}$ to a full hereditary $C^*$-subalgebra of $C^*(E_{\mathbb{N}}\;{\times}\;E)({\subset}\;C^*(E_{\mathbb{Z}}\;{\times}\;E))$ and then show that $C^*(E_{\mathbb{N}}\;{\times}\;E)$ is stable whenever $C^*(E)^{\gamma}$ is so. Thus $C^*(E)^{\gamma}$ cannot be stable if $C^*(E_{\mathbb{N}}\;{\times}\;E)$ admits a trace. It is shown that this is the case if the vertex matrix of E has an eigenvector with an eigenvalue $\lambda$ > 1. The AF algebras $C^*(E)^{\gamma}_{\upsilon}$ are shown to be nonstable whenever E is irreducible. Several examples are discussed.

DYNAMICAL SYSTEMS AND GROUPOID ALGEBRAS ON HIGHER RANK GRAPHS

  • Yi, In-Hyeop
    • The Pure and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.199-209
    • /
    • 2012
  • For a locally compact higher rank graph ${\Lambda}$, we construct a two-sided path space ${\Lambda}^{\Delta}$ with shift homeomorphism ${\sigma}$ and its corresponding path groupoid ${\Gamma}$. Then we find equivalent conditions of aperiodicity, cofinality and irreducibility of ${\Lambda}$ in (${\Lambda}^{\Delta}$, ${\sigma}$), ${\Gamma}$, and the groupoid algebra $C^*({\Gamma})$.

THE AUTOMORPHISM GROUP OF COMMUTING GRAPH OF A FINITE GROUP

  • Mirzargar, Mahsa;Pach, Peter P.;Ashrafi, A.R.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.1145-1153
    • /
    • 2014
  • Let G be a finite group and X be a union of conjugacy classes of G. Define C(G,X) to be the graph with vertex set X and $x,y{\in}X$ ($x{\neq}y$) joined by an edge whenever they commute. In the case that X = G, this graph is named commuting graph of G, denoted by ${\Delta}(G)$. The aim of this paper is to study the automorphism group of the commuting graph. It is proved that Aut(${\Delta}(G)$) is abelian if and only if ${\mid}G{\mid}{\leq}2$; ${\mid}Aut({\Delta}(G)){\mid}$ is of prime power if and only if ${\mid}G{\mid}{\leq}2$, and ${\mid}Aut({\Delta}(G)){\mid}$ is square-free if and only if ${\mid}G{\mid}{\leq}3$. Some new graphs that are useful in studying the automorphism group of ${\Delta}(G)$ are presented and their main properties are investigated.

EXTENDED ZERO-DIVISOR GRAPHS OF IDEALIZATIONS

  • Bennis, Driss;Mikram, Jilali;Taraza, Fouad
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.7-17
    • /
    • 2017
  • Let R be a commutative ring with zero-divisors Z(R). The extended zero-divisor graph of R, denoted by $\bar{\Gamma}(R)$, is the (simple) graph with vertices $Z(R)^*=Z(R){\backslash}\{0\}$, the set of nonzero zero-divisors of R, where two distinct nonzero zero-divisors x and y are adjacent whenever there exist two non-negative integers n and m such that $x^ny^m=0$ with $x^n{\neq}0$ and $y^m{\neq}0$. In this paper, we consider the extended zero-divisor graphs of idealizations $R{\ltimes}M$ (where M is an R-module). At first, we distinguish when $\bar{\Gamma}(R{\ltimes}M)$ and the classical zero-divisor graph ${\Gamma}(R{\ltimes}M)$ coincide. Various examples in this context are given. Among other things, the diameter and the girth of $\bar{\Gamma}(R{\ltimes}M)$ are also studied.