• Title/Summary/Keyword: granular structure

Search Result 201, Processing Time 0.025 seconds

A Study on the Retained Austenite and Tensile Properties of TRIP Type High Strength Steel Sheet with Cu (Cu 함유 TRIP형 고장력 강판의 잔류오스테나이트 및 인장특성에 관한 연구)

  • Kang, C.Y.;Kim, H.J.;Kim, H.G.;Sung, J.H.;Moon, W.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.3
    • /
    • pp.231-239
    • /
    • 1999
  • Volume fraction and morphology of retained austenite, tensile properties of TRIP type high strength steel sheet with Fe-C-Si-Mn-Cu chemical composition have been investigated. The retained austenite of granular, bar and film type existing in specimen was obtained after intercritical annealing and austempering. The granular type retained austenite increased with increase of intercritical annealing and austempering temperature. With increase of intercritical annealing temperature, retained austenite and carbon contents increased. Maximum contents of retained austenite was obtained by austempering at $400^{\circ}C$. The maximum tensile strength was obtained by austempering at $450^{\circ}C$ and maximum elongation was obtained at $400^{\circ}C$. T.S${\times}$E.L value increased with increase of retained austenite contents due to the elongation strongly controlled by contents of retained austenite, but tensile strength was affected with various factors such as bainitic structure etc.

  • PDF

Anatomical and Physical Characteristics of Pinus Densiflora Wood Damaged by Forest Fire (산불 피해 소나무재의 해부 및 물리학적 특성)

  • Hwang, Won-Joong;Kwon, Goo-Joong;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.1-7
    • /
    • 2003
  • Anatomical and physical characteristics of damaged wood by forest fire and sound wood of Pinus densiflora were examined. Granular substances were found in resin canals, epithelial cells and ray parenchyma cells of damaged wood, but the other distinctive marks of wood structure in damaged wood were not observed. Damaged wood showed slightly higher relative crystallinity in outermost growth ring than sound wood. Green moisture content and water absorptions both in tangential and radial sections of damaged wood were lower than those of sound wood. There were no significant differences in shrinkage, swelling and basic density between damaged and sound woods.

Prediction of maximum shear modulus (Gmax) of granular soil using empirical, neural network and adaptive neuro fuzzy inference system models

  • Hajian, Alireza;Bayat, Meysam
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.291-304
    • /
    • 2022
  • Maximum shear modulus (Gmax or G0) is an important soil property useful for many engineering applications, such as the analysis of soil-structure interactions, soil stability, liquefaction evaluation, ground deformation and performance of seismic design. In the current study, bender element (BE) tests are used to evaluate the effect of the void ratio, effective confining pressure, grading characteristics (D50, Cu and Cc), anisotropic consolidation and initial fabric anisotropy produced during specimen preparation on the Gmax of sand-gravel mixtures. Based on the tests results, an empirical equation is proposed to predict Gmax in granular soils, evaluated by the experimental data. The artificial neural network (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS) models were also applied. Coefficient of determination (R2) and Root Mean Square Error (RMSE) between predicted and measured values of Gmax were calculated for the empirical equation, ANN and ANFIS. The results indicate that all methods accuracy is high; however, ANFIS achieves the highest accuracy amongst the presented methods.

A Study on Fatigue strength by hardenability of Boron Addition Steel (보론 첨가강의 경화기구에 따른 기계적 성질에 관한 연구)

  • Lee, Jong-Hyung;Yoo, Duck-Sang;Park, Shin-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.4
    • /
    • pp.299-305
    • /
    • 2003
  • This research is for the relationship with heat treatment cooling temprature and the characteristic of Mechanical properties of Boron-Addition-Steel, the main material and SM25C steel, the sub material, structure viewing fractography, hardness test, tensite test and are carried out after the manufacturing small-specimen treated with heat of $750^{\circ}C$, $850^{\circ}C$, $1050^{\circ}C$. The influence to the Mechanical properties accompanied by AISI51B20, Boron-Addition-steel shows the following result. 1. The influenc of heat treatment by the content of cabon-steel is dominant. Addition of boron result is Strengthening structure effectively by segregation and improving over all mechanical characters such as good. it results from the increase of temacity by the stability of inter granular with improvement of harden-ability. 2. Boron-Addition-Steel exist in the from of martensite structure accompanied by the ferrite precipitition centering around grain boundary, and is improved to Hv 200. 3. The height of harden-ability and fatigue stress the influence of heat results from crystal structure of martensite by difference of strength level in the structure of ferrite and doesn't have am effect on sensibility of temperature, and turns out to defend on production and growth of Matrix-structure-factor.

  • PDF

Microstructure of brass electrodeposits in cyanide solution (시안화 황동도금욕을 사용한 黃銅電着層의 현미경조직)

  • Ye, Gil-Chon;Kim, Jong-Kwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.17 no.4
    • /
    • pp.106-119
    • /
    • 1984
  • Brass was electrodeposited over the range of the current densities from 2 to 8 A/$dm^2$ in cyanide bath at 20 and 40$^{\circ}C$. The cathode overpotential increased and the cathode efficiency was decreased respectively with decreasing temperature, increasing current density and addition of organic substance. The perferred orientation of the deposits were associated with the cathode overpotential and the nucleation energy of lattice planes. The (111) preferred orientation developed at the low current density and low cathode overpotential (440-520mV). On the other hand, the (111)+(100) preferred orientation developed at higher cathode overpotential (528-680mV). The (111)+(100) preferred orientation developed over the whole range of overpotential in the cyanide solution with organic additive. The copper content of deposit decreased with increasing current density and decreasing temperature. The morphology of the deposits with no additive was the polygonal body type of structure and the structure of the cross section was columnar structure. The morphology of the deposits with additive, on the other hand, was fine crystallite type of structure. And the structure of the cross section of them was the finer granular structure.

  • PDF

The effect of pile cap stiffness on the seismic response of soil-pile-structure systems under near-fault ground motions

  • Abbasi, Saeed;Ardakani, Alireza;Yakhchalian, Mansoor
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.87-96
    • /
    • 2021
  • Ground motions recorded in near-fault sites, where the rupture propagates toward the site, are significantly different from those observed in far-fault regions. In this research, finite element modeling is used to investigate the effect of pile cap stiffness on the seismic response of soil-pile-structure systems under near-fault ground motions. The Von Wolffersdorff hypoplastic model with the intergranular strain concept is applied for modeling of granular soil (sand) and the behavior of structure is considered to be non-linear. Eight fault-normal near-field ground motion records, recorded on rock, are applied to the model. The numerical method developed is verified by comparing the results with an experimental test (shaking table test) for a soil-pile-structure system. The results, obtained from finite element modeling under near-fault ground motions, show that when the value of cap stiffness increases, the drift ratio of the structure decreases, whereas the pile relative displacement increases. Also, the residual deformations in the piles are due to the non-linear behavior of soil around the piles.

Preparation of New Corrosive Resistive Magnesium Coating Films (고내식성의 신 마그네슘 코팅막 제작)

  • Lee, Myeong-Hun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.103-113
    • /
    • 1996
  • The properties of the deposited film depend on the deposition condition and these, in turn depend critically on the morphology and crystal orientation of the films. Therefore, it is important to clarify the nucleation occurrence and growth stage of the morphology and orientation of the film affected by deposition parameters, e.g. the gas pressure and bias voltage etc. In this work, magnesium thin flims were prepared on cold-rolled steel substrates by a thermo-eletron activation ion plating technique. The influence of nitrogen gas pressure and substrate bias voltage on their crystal orientation and morphology of the coated films were investigated by scanning electron microscopy (SEM) and X-ray diffraction, respectively. The diffraction peaks of magnesium film became less sharp and broadened with the increase of nitrogen gas pressure. With an increase in nitrogen gas pressure, flim morphology changed from colum nar to granular structure, and surface crystal grain-size decreased. The morphology of films depended not only on gas pressure but also on bias voltage, i.e., the effect of increasing bias voltage was similar to that of decreasing gas pressure. The effect of crystal orientation and morphology of magnesium films on corrosion behaviors was estimated by measuring anodic polarization curves in deaerated 3%NaCl solution. Magnesium, in general, has not a good corrosion resistance in all environments. However, these magnesium films prepared by changing nitrogen gas pressure showed good corrosion resistance. Among the films, magnesium films which exhibited granular structure had the highest corrosion resistance. The above phenomena can be explained by applying the effects of adsorption, occlusion and ion sputter of nitrogen gas.

  • PDF

Enhancement of Magneto-Optical Kerr Effect in Annealed Granular Films of Co-Au and $Co-AlO_x$

  • Abe, Masanori;Takeda, Eishi;Kitamoto, Yoshitaka;Shirasaki, Fumio;Todoroki, Norikazu;Gorodetzky, Gad;Ohnuma, Shigehiro;Masumoto, Tasuku;Inoue, Mitsuteru
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.100-102
    • /
    • 2000
  • Co fine particles were dispersed in Au metal and $AlO_x$ amorphous matrices by vacuum evaporation and rf-sputtering, respectively, thus forming granular composite films having chemical compositions of $Co_{0.59}-Au_{0.41}$ and $Co_{0.52}/(AlO_x$)_{0.48}$. The films were annealed at 200~$500^{\circ}C$ to increase the size of the Co particles, from 30$\AA$ to 180$\AA$ in the Au matrix and 40$\AA$ to 180$\AA$ in the $AlO_x$ matrix, as revealed by X-ray diffraction analysis. The Co metal in as-deposited films have saturation magnetization equivalent to that of bulk Co, which is unchanged by the annealing, showing that the Co metal is not oxidized by the annealing. Magneto-optical Kerr rotation measured at $\lambda$=400-900nm for the $Co_{0.59}-Au_{0.41}$ film as deposited is larger than that calculated for the composition. The rotation increases as the film is annealed at $200^{\circ}C$ and $300^{\circ}C$, approaching to that of bulk Co. The Kerr rotation for the $Co_{0.52}-(AlO_x)_{0.48}$ film as deposited is smaller than that calculated for the composition based on Bruggeman effective medium theory. However, the rotation increases much, exceeding the rotation of the bulk Co as annealed at $300^{\circ}C$ and $400^{\circ}C$. As a possible origin of the marked magneto-optical enhancement a weak localization of light in granular structure is suggested.

  • PDF

Experimental Study on the Deformation and Failure Behavior of Tono Granite (토노(Tono) 화강암의 변형 및 파괴거동에 관한 실험적 연구)

  • Choi, Jung-Hae;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.22 no.2
    • /
    • pp.173-183
    • /
    • 2012
  • The nature of surface deformation of Tono granite was investigated using a confocal laser scanning microscope (CLSM) under water-saturated stress relaxation conditions. A new apparatus was developed for this experiment, enabling continuous measurements of stress-strain and simultaneous observations of surface deformation by CLSM. The amounts of grain contact deformation and intra-granular surface deformation were calculated using a finite element method. The results reveal that intense grain contact deformation and intra-granular surface deformation occurred during the period of stress relaxation, and that the intensity of this deformation increased with increasing applied stress. Finite element method (FEM) results show that the strain of grain boundary was greater than strain of inter-granular surface. Contour maps of these local strains were compiled for individual grains and their boundaries, revealing intense deformation at the boundaries between biotite and quartz under compressional stress. This result was a consequence of the mechano-chemical effect of biotite and quartz minerals. Biotite in granite has a layered structure of iron-magnesium-aluminum silicate sheets that are weakly bonded together by layers of potassium ions. In contrast, quartz occurs as stable spherical grains.

Effect of Fine Content on the Monotonic Shear Behavior of Sand-Clay Mixtures (점토와 모래의 혼합토의 정적 전단거동에 대한 세립분 함유율의 영향)

  • Kim, Uk-Gie;Masayuki, Hyodo;Beak, Won-Jin;Ahn, Tae-Bong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.91-100
    • /
    • 2007
  • In most design codes, soils are classified as either sand or clay, and appropriate design equations are used to represent their behavior. For example, the behavior of sandy soils is expressed in terms of the relative density, whereas consistency limits are often used for clays. However, sand-clay mixtures, which are typically referred to as intermediate soils, cannot be easily categorized as either sand or clay and therefore a unified interpretation of how the soil will behave at the transition point, i.e., from sandy behavior when fines are low to clay behavior for high fines content, is necessary. In this study, active natural clays are mixed with sand, and the fines content varied in order to produce different structures, ranging from one state where only sand particles form the soil structure to another where the matrix of fines make-up the structure. While paying attention to the granular void ratio in order to clarify the shear properties of sand-clay mixtures with increasing fines content monotonic, shear tests were performed on isotropically, and anisotropically consolidated specimens. From the test results, it was observed that the monotonic shear strength of sand-clay mixtures is dependent on the granular void ratio.