Browse > Article
http://dx.doi.org/10.12989/eas.2021.20.1.087

The effect of pile cap stiffness on the seismic response of soil-pile-structure systems under near-fault ground motions  

Abbasi, Saeed (Department of Civil Engineering, Imam Khomeini International University)
Ardakani, Alireza (Department of Civil Engineering, Imam Khomeini International University)
Yakhchalian, Mansoor (Department of Civil Engineering, Imam Khomeini International University)
Publication Information
Earthquakes and Structures / v.20, no.1, 2021 , pp. 87-96 More about this Journal
Abstract
Ground motions recorded in near-fault sites, where the rupture propagates toward the site, are significantly different from those observed in far-fault regions. In this research, finite element modeling is used to investigate the effect of pile cap stiffness on the seismic response of soil-pile-structure systems under near-fault ground motions. The Von Wolffersdorff hypoplastic model with the intergranular strain concept is applied for modeling of granular soil (sand) and the behavior of structure is considered to be non-linear. Eight fault-normal near-field ground motion records, recorded on rock, are applied to the model. The numerical method developed is verified by comparing the results with an experimental test (shaking table test) for a soil-pile-structure system. The results, obtained from finite element modeling under near-fault ground motions, show that when the value of cap stiffness increases, the drift ratio of the structure decreases, whereas the pile relative displacement increases. Also, the residual deformations in the piles are due to the non-linear behavior of soil around the piles.
Keywords
soil-pile-structure; near-fault ground motions; hypoplasticity; flexibility; finite element method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fleming, K. Weltman, A. Randolph, M. and Elson, K. (1985), Piling engineering, John Wiley and Sons, New York.
2 Ghorbani, A, Hasanzadehshooiili, H, Ghamari, E. and Medzvieckas, J. (2014), "Comprehensive three dimensional finite element analysis, parametric study and sensitivity analysis on the seismic performance of soil-micropile-superstructure interaction", Soil Dyn. Earthq. Eng., 58, 21-36. https://doi.org/10.1016/j.soildyn.2013.12.001.   DOI
3 Gudehus, G. (1996), "A comprehensive constitutive equation for granular materials", Soils Found., 36(1), 1-12. https://doi.org/10.3208/sandf.36.1.   DOI
4 Hall, J.F. Heaton, T.H. Halling, M.W. and Wald, D.J. (1995), "Near-source ground motion and its effects on flexible buildings", Earthq. Spectra, 11(4), 569-605.   DOI
5 Herle, I. and Gudehus, G. (1999), "Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies", Mech. Cohesive-Frictional Mater., 4(5), 461-486. https://doi.org/10.1002/(SICI)10991484(199909)4:5<461::AIDCFM71>3.0.CO;2-P.   DOI
6 Hokmabadi, A.S. Fatahi, B. and Samali, B. (2014), "Assessment of soil-pile-structure interaction influencing seismic response of mid-rise buildings sitting on floating pile foundations", Comput. Geotech., 55, 172-186. https://doi.org/10.1016/j.compgeo.2013.08.011.   DOI
7 Hwang, T.H. Kim, K.H. and Shin, J.H. (2017), "Bearing capacity of micropiled-raft system", Struct. Eng. Mech., 63(3), 417-428. http://dx.doi.org/10.12989/sem.2017.63.3.417.   DOI
8 Iervolino, I. Chioccarelli, E. and Baltzopoulos, G. (2012), "Inelastic displacement ratio of near-source pulse-like ground motions", Earthq. Eng. Struct. Dyn., 41(15), 2351-2357. https://doi.org/10.1002/eqe.2167.   DOI
9 Kalkan, E. and Kunnath, S.K. (2006), "Effects of fling step and forward directivity on seismic response of buildings", Earthq. Spectra, 22(2), 367-390. https://doi.org/10.1193/1.2192560.   DOI
10 Kolymbas, D. (1985), "A generalized hypoelastic constitutive law", Proceedings of XI International Conference Soil Mechanics and Foundation Engineering, AA Balkema, San Francisco.
11 Kolymbas, D. (2000), "The misery of constitutive modelling. Constitutive Modelling of Granular Materials", Springer, 11-24.
12 Kramer, S.L. (1996), "Geotechnical earthquake engineering", Prentice Hall.
13 Kumar, M.P. Raju, P.M. Jasmine, G.V. and Aditya, M. (2020), "Settlement analysis of pile cap with normal and under-reamed piles", Comput. Concrete, 25(6), 525-535. http://dx.doi.org/10.12989/cac.2020.25.6.525.   DOI
14 Lanzano, G. Bilotta, E. Russo, G. and Silvestri, F. (2014), "Experimental and numerical study on circular tunnels under seismic loading.", Europe. J. Environ. Civil Eng., 19, 539-563. https://doi.org/10.1080/19648189.2014.893211.   DOI
15 Lysmer, J. and Kuhlemeyer, R.L. (1969), "Finite dynamic model for infinite media", J. Eng. Mech. Div., 95(4), 859-878.   DOI
16 Maheshwari, B. and Sarkar, R. (2011), "Seismic behavior of soilpile-structure interaction in liquefiable soils: Parametric study", Int. J. Geomech., 11(4). 335-347. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000087.   DOI
17 Maheshwari, B., Truman, K, El Naggar, M. and Gould, P. (2004), "Three-dimensional nonlinear analysis for seismic soil-pile-structure interaction", Soil Dyn. Earthq. Eng., 24(4), 343-356. https://doi.org/10.1016/j.soildyn.2004.01.001.   DOI
18 Mavroeidis, G. Dong, G. and Papageorgiou, A. (2004), "Near-fault ground motions, and the response of elastic and inelastic single-degree-of-freedom (SDOF) systems", Earthq. Eng. Struct. Dyn., 33(9), 1023-1049. https://doi.org/10.1002/eqe.391.   DOI
19 Masin, D. (2019), "Modeling of soil behavior with Hypoplasticity: Another Approach to soil constitutive modeling", Springer Series in Geomechanics and Geoengineering.
20 Matsumoto, T. Fukumura, K. Horikoshi, K. and Oki, A. (2004), "Shaking table tests on model piled rafts in sand considering influence of superstructures", Int. J. Phys. Modelling Geotech., 4(3), 21-38. https://doi.org/10.1680/ijpmg.2004.040302.   DOI
21 Mohammadi-Haji, B. and Ardakani, A. (2020), "Numerical prediction of circular tunnel seismic behavior using hypoplastic soil constitutive model", Int. J. Geotech. Eng., 14(4), 428-441. https://doi.org/10.1080/19386362.2018.1438152.   DOI
22 Mohammadi-Haji, B. and Ardakani, A. (2020), "Performance based analysis of tunnel under seismic events with nonlinear features of soil mass and lining", Soil Dyn. Earthq. Eng., 134, 106158. https://doi.org/10.1016/j.soildyn.2020.106158.   DOI
23 Niemunis, A. and Herle, I. (1997), "Hypoplastic model for cohesionless soils with elastic strain range", Mech. Cohesive-Frictional Mater.: Int. J. Experim., Modelling Comput. Mater. Struct., 2(4), 279-299. https://doi.org/10.1002/(SICI)1099-1484(199710)2:4%3C279::AID-CFM29%3E3.0.CO;2-8.   DOI
24 Pan, H., Li, C. and Tian, L. (2020), "Seismic response and failure analyses of pile-supported transmission towers on layered ground", Struct. Eng. Mech., 76(2), 223-237. http://dx.doi.org/10.12989/sem.2020.76.2.223.   DOI
25 Shariati, M., Azar, S.M., Arjomand, M.A., Tehrani, H.S., Daei, M., and Safa, M. (2019). "Comparison of dynamic behavior of shallow foundations based on pile and geosynthetic materials in fine-grained clayey soils", Geomech. Eng., 19(6), 473-484. http://dx.doi.org/10.12989/gae.2020.19.6.473.   DOI
26 Raheem, S.E.A. Aal, E.M.A. AbdelShafy, A.G. Fahmy, M.F. and Mansour, M.H. (2020a), "Pile-soil-structure interaction effect on structural response of piled jacket-supported offshore platform through in-place analysis", Earthq. Struct., 18(4), 407-421. http://dx.doi.org/10.12989/eas.2020.18.4.407.   DOI
27 Raheem, S.E.A. Aal, E.M.A. AbdelShafy, A.G. Mansour, M.H. and Omar, M. (2020b), "Numerical analysis for structure-pilefluid-soil interaction model of fixed offshore platform", Ocean Syst. Eng., 10(3), 243-266. http://dx.doi.org/10.12989/ose.2020.10.3.243.   DOI
28 Schofield, A. and Wroth, C. (1968), Critical State Soil Mechanics, McGraw-Hill, London.
29 Simulia, D.C.S. (2011). ABAQUS 6.11 analysis user's manual, Abaqus 6.11.
30 Somerville, P. (2000), "New developments in seismic hazard estimation", Proceedings of the 6th International Conference on Seismic Zonation, Palm Springs, C.A.
31 Somerville, P.G. Smith, N.F. Graves, R.W. and Abrahamson, N.A. (1997), "Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity", Seismol. Res. Let., 68(1), 199-222. https://doi.org/10.1785/gssrl.68.1.199.   DOI
32 Stewart, J.P. and Kramer, S.L. (2004), "Geotechnical aspects of seismic hazards", Earthq. Eng., 123-230, CRC Press.
33 Tang, Y. and Zhang, J. (2011), "Response spectrum-oriented pulse identification and magnitude scaling of forward directivity pulses in near-fault ground motions", Soil Dyn. Earthq. Eng., 31(1), 59-76. https://doi.org/10.1016/j.soildyn.2010.08.006.   DOI
34 Taravati, H. and Ardakani, A. (2018), "The numerical study of seismic behavior of gravity retaining wall built near rock face", Earthq. Struct., 14(2), 179-186. http://dx.doi.org/10.12989/eas.2018.14.2.179.   DOI
35 von Wolffersdorff, P.A. (1996), "A hypoplastic relation for granular materials with a predefined limit state surface", Mech. Cohesive-Frictional Materials: Int. J. Experim., Modelling Comput. Mater. Struct., 1(3), 251-271.   DOI
36 Zienkiewicz, O. Emson, C. and Bettess, P. (1983), "A novel boundary infinite element", Int. J. Numer. Meth. Eng., 19(3), 393-404.   DOI
37 Wang, G.Q, Zhou, X.Y., Zhang, P.Z. and Igel, H. (2002), "Characteristics of amplitude and duration for near fault strong ground motion from the 1999 Chi-Chi, Taiwan earthquake", Soil Dyn. Earthq. Eng., 22(1), 73-96. https://doi.org/10.1016/S0267-7261(01)00047-1.   DOI
38 Singh, J.P. (1985), "Earthquake ground motions: implications for designing structures and reconciling structural damage", Earthq. Spectra, 1(2), 239-270.   DOI
39 Won, J. Ahn, S.Y. Jeong, S. Lee, J. and Jang, S.Y. (2006), "Nonlinear three-dimensional analysis of pile group supported columns considering pile cap flexibility", Comput. Geotech., 33(6), 355-370. https://doi.org/10.1016/j.compgeo.2006.07.007.   DOI
40 Zhang, M. Parke, G. and Chang, Z. (2018), "The dynamic response and seismic damage of single-layer reticulated shells subjected to near-fault ground motions", Earthq. Struct., 14(5), 399-409. http://dx.doi.org/10.12989/eas.2018.14.5.399.   DOI
41 Arnold, M. (2008), "Application of the Intergranular Strain Concept to the Hypoplastic Modelling of Non-Adhesive Interfaces", The 12th Int. Conference of IACMAG.
42 Alavi, B. and Krawinkler, H. (2004), "Behavior of moment-resisting frame structures subjected to near-fault ground motions", Earthq. Eng. Struct. Dyn., 33(6), 687-706. https://doi.org/10.1002/eqe.369.   DOI
43 Anandarajah, A. and Zhang, J. (2000), "Simplified finite element modeling of nonlinear dynamic pile-soil interaction", Retrieved February, 10, 2005.
44 Ansari, M. Safiey, A. and Abbasi, M. (2020), "Fragility based performance evaluation of mid rise reinforced concrete frames in near field and far field earthquakes", Struct. Eng. Mech., 76(6), 751. http://dx.doi.org/10.12989/scs.2020.76.6.751.   DOI
45 Atefatdoost, G.R. JavidSharifi, B. and Shakib, H. (2018), "Effects of foundation flexibility on seismic demands of asymmetric buildings subject to near-fault ground motions", Struct. Eng. Mech., 66(5), 637-648. http://dx.doi.org/10.12989/sem.2018.66.5.637.   DOI
46 Baker, J.W. (2007), "Quantitative classification of near-fault ground motions using wavelet analysis", Bull. Seismol. Soc. Amer., 97(5), 1486-1501. https://doi.org/10.1785/0120060255.   DOI
47 Bauer, E. (1996), "Calibration of a comperhensive hypoplastic model for granular materials", Soils Found., 36(1), 13-26. https://doi.org/10.3208/sandf.36.13.   DOI
48 Bowles, J.E. (1982), Foundation design and analysis, McGraw-Hill, New York.
49 Bentley, K.J. and Naggar, M.H.E. (2000), "Numerical analysis of kinematic response of single piles", Canadian Geotech. J., 37(6), 1368-1382. https://doi.org/10.1139/t00-066.   DOI
50 Bilotta, E. Lanzano, G. Madabhushi, S.P.G. and Silvestri, F. (2014), "A numerical round robin on tunnels under seismic actions", Acta Geotech., 9, 563-579. https://doi.org/10.1007/s11440-014-0330-3.   DOI
51 Bradley, B.A. Cubrinovski, M. Dhakal, R.P. and MacRae, G.A. (2009), "Intensity measures for the seismic response of pile foundations", Soil Dyn. Earthq. Eng., 29(6), 1046-1058. https://doi.org/10.1016/j.soildyn.2008.12.002.   DOI
52 Bray, J.D. and Rodriguez-Marek, A. (2004), "Characterization of forward-directivity ground motions in the near-fault region", Soil Dyn. Earthq. Eng., 24(11), 815-828. https://doi.org/10.1016/j.soildyn.2004.05.001.   DOI
53 Chang, Z. Liu, Z. Chen, Z. and Zhai, C. (2019), "Use of near-fault pulse-energy for estimating critical structural responses", Earthq. Struct., 16(4), 415-423. http://dx.doi.org/10.12989/eas.2019.16.4.415.   DOI
54 Chau, K. Shen, C. and Guo, X. (2009), "Nonlinear seismic soil-pile-structure interactions: Shaking table tests and FEM analyses", Soil Dyn. Earthq. Eng., 29(2), 300-310. https://doi.org/10.1016/j.soildyn.2008.02.004.   DOI
55 Chen, X. (1995), Near-field ground motion from the Landers earthquake, California Institute of Technology. https://resolver.caltech.edu/CaltechTHESIS:12012011110028500.
56 Cui, C. Zhang, S. Chapman, D. and Meng, K. (2018), "Dynamic impedance of a floating pile embedded in poro-visco-elastic soils subjected to vertical harmonic loads", Geomech. Eng., 15(2), 793-803. http://dx.doi.org/10.12989/gae.2018.15.2.793.   DOI