• Title/Summary/Keyword: granular bainite

Search Result 26, Processing Time 0.022 seconds

Effect of Rolling Conditions on Microstructure and Mechanical Properties of Thick Steel Plates for Offshore Platforms (해양플랜트용 후판강의 미세조직과 기계적 특성에 미치는 압연 조건의 영향)

  • Kim, Jongchul;Suh, Yonhchan;Hwang, Sungdoo;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.28 no.8
    • /
    • pp.478-488
    • /
    • 2018
  • In this study, three kinds of steels are manufactured by varying the rolling conditions, and their microstructures are analyzed. Tensile and Charpy impact tests are performed at room temperature to investigate the correlation between microstructure and mechanical properties. In addition, heat affected zone(HAZ) specimens are fabricated through the simulation of the welding process, and the HAZ microstructure is analyzed. The Charpy impact test of the HAZ specimens is performed at $-40^{\circ}C$ to investigate the low temperature HAZ toughness. The main microstructures of steels are quasi-polygonal ferrite and pearlite with fine grains. Because coarse granular bainite forms with an increasing finish rolling temperature, the strength decreases and elongation increases. In the steel with the lowest reduction ratio, coarse granular bainite forms. In the HAZ specimens, fine acicular ferrites are the main features of the microstructure. The volume fraction of coarse bainitic ferrite and granular bainite increases with an increasing finish rolling temperature. The Charpy impact energy at $-40^{\circ}C$ decreases with an increasing volume fraction of bainitic ferrite and granular bainite. In the HAZ specimen with the lowest reduction ratio, coarse bainitic ferrite and granular bainite forms and the Charpy impact energy at $-40^{\circ}C$ is the lowest.

Effect of Carbon Equivalent and Cooling Rate on Microstructure in A516 Steels for Pressure Vessel (압력용기용 A516 강의 미세조직에 미치는 탄소 당량과 냉각 속도의 영향)

  • Lee, Hyun Wook;Kang, Ui Gu;Kim, Min Soo;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.29 no.8
    • /
    • pp.511-518
    • /
    • 2019
  • In this study, the effect of carbon equivalent and cooling rate on microstructure and hardness of A516 steels for pressure vessel is investigated. Six kinds of specimens are fabricated by varying carbon equivalent and cooling rate, and their microstructures and hardness levels are analyzed. Specimens with low carbon equivalent consist of ferrite and pearlite. As the cooling rate increases, the size of pearlite decreases slightly. The specimens with high carbon equivalent and rapid cooling rates of 10 and $20^{\circ}C/s$ consist of not only ferrite and pearlite but also bainite structure, such as granular bainite, acicular ferrite, and bainite ferrite. As the cooling rate increases, the volume fractions of bainite structure increase and the effective grain size decreases. The effective grain sizes of granular bainite, acicular ferrite, and bainitic ferrite are ~20, ~5, and ${\sim}10{{\mu}m$, respectively. In the specimens with bainite structure, the volume fractions of acicular ferrite and bainitic ferrite, with small effective grains, increase as cooling rate increases, and so the hardness increases significantly.

Effect of Mo, Cr, and V on Tensile and Charpy Impact Properties of API X80 Linepipe Steels Rolled in Single Phase Region (단상영역에서 압연된 API X80 라인파이프강의 인장 및 샤르피 충격 특성에 미치는 Mo, Cr, V의 영향)

  • Han, Seung Youb;Shin, Sang Yong;Seo, Chang-hyo;Lee, Hakcheol;Bae, Jin-ho;Kim, Kisoo;Lee, Sunghak;Kim, Nack J.
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.12
    • /
    • pp.788-799
    • /
    • 2008
  • This study is concerned with the effects of Mo, Cr, and V addition on tensile and Charpy impact properties of API X80 linepipe steels. Four kinds of steels were processed by varying Mo, Cr, and V additions, and their microstructures and tensile and Charpy impact properties were investigated. Since the addition of Mo and V promoted to form fine acicular ferrite and granular bainite, while prohibiting the coarsening of granular bainite, it increased the strength and upper shelf energy, and decreased the energy transition temperature. The Cr addition promoted the formation of coarse granular bainite and secondary phases such as martensite-austenite constituents, thereby leading to the increased effective grain size, energy transition temperature, and strength and to the decreased upper shelf energy. The steel containing 0.3wt.% Mo and 0.06wt.% V without Cr had the highest upper shelf energy and the lowest energy transition temperature because its microstructure was composed of fine acicular ferrite and granular bainite, together with a small amount of hard secondary phases, while its tensile properties maintained excellent.

Effects of Mo and Nb on Tensile and Charpy Impact Properties of API X80 Linepipe Steels (API X80 라인파이프 강의 인장 및 샤르피 충격 특성에 미치는 Mo 및 Nb의 영향)

  • Min, Kyung-Zoon;Bae, Jin-Ho;Kim, Ki-Soo;Lee, Doh-Jae
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.10
    • /
    • pp.766-773
    • /
    • 2011
  • In this study, three kinds of linepipe steels were processed by changing the amount of Mo and Nb to investigate the effects on microstructures, tensile and Charpy impact properties. All the specimens consisted of acicular ferrite, granular bainite and secondary phases such as martensite and austenite constituents (MA). The increase in Mo raised the volume fractions of the granular bainite and MA, and raised the number of fine precipitates, which increased the yield and tensile strengths and decreased the upper self energy and energy transition temperatures. In the steel having less Mo and more Nb, the volume fractions of the granular bainite and MA decreased, and a finer microstructure was observed. This microstructure suppressed the formation of separation during Charpy impact testing and led to a higher upper shelf energy and lower energy transition temperature, while the yield and tensile strengths were lower than those of the steels with more Mo and less Nb.

Study on the bainitic microstructure in low carbon HSLA steels (저탄소.저합금 강의 베이나이트 미세 구조 연구)

  • Kang, J.S.;Ahn, S.S.;Yoo, J.Y.;Park, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.154-157
    • /
    • 2007
  • The austenite phase observed in low carbon HSLA steels is well known to be decomposed to various bainitic microstructures, such as granular bainite, acicular ferrite and bainitic ferrite during continuous cooling process. These bainitic microstructures have been usually identified by using either scanning electron microscope (SEM) or transmission electron microscope (TEM). However, SEM and TEM images do no exactly coincide, because of the quite different sample preparation method in SEM and TEM observations. These conventional analysis method is, thus, not suitable for characterization of the complex bainitic microstructure. In this study, focused ion beam (FIB) technique was applied to make site-specific TEM specimens and to identify the 3-dimensional grain morphologies of the bainitic microstructure. The morphological feature and grain boundary characteristics of each bainitic microstructure were exactly identified.

  • PDF

Effect of Isothermal Heat Treatment on the Microstructure and Mechanical Properties of Medium-Carbon Bainitic Steels (등온 열처리에 따른 중탄소 베이나이트강의 미세조직과 기계적 특성)

  • Lee, Ji-Min;Lee, Sang-In;Lim, Hyeon-Seok;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.28 no.9
    • /
    • pp.522-527
    • /
    • 2018
  • This study investigates the effects of isothermal holding temperature and time on the microstructure, hardness and Charpy impact properties of medium-carbon bainitic steel specimens. Medium-carbon steel specimens with different bainitic microstructures are fabricated by varying the isothermal conditions and their microstructures are characterized using OM, SEM and EBSD analysis. Hardness and Charpy impact tests are also performed to examine the correlation of microstructure and mechanical properties. The microstructural analysis results reveal that granular bainite, bainitic ferrite, lath martensite and retained austenite form differently in the specimens. The volume fraction of granular bainite and bainitic ferrite increases as the isothermal holding temperature increases, which decreases the hardness of specimens isothermally heat-treated at $300^{\circ}C$ or higher. The specimens isothermally heat-treated at $250^{\circ}C$ exhibit the highest hardness due to the formation of lath martensite, irrespective of isothermal holding time. The Charpy impact test results indicate that increasing isothermal holding time improves the impact toughness because of the increase in volume fraction of granular bainite and bainitic ferrite, which have a relatively soft microstructure compared to lath martensite for specimens isothermally heat-treated at $250^{\circ}C$ and $300^{\circ}C$.

Effect of Vanadium and Boron on Microstructure and Low Temperature Impact Toughness of Bainitic Steels (베이나이트강의 미세조직과 저온 충격 인성에 미치는 바나듐과 보론의 영향)

  • Huang, Yuanjiu;Lee, Hun;Cho, Sung Kyu;Seo, Jun Seok;Kwon, Yongjai;Lee, Jung Gu;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.31 no.3
    • /
    • pp.139-149
    • /
    • 2021
  • In this study, three kinds of bainitic steels are fabricated by controlling the contents of vanadium and boron. High vanadium steel has a lot of carbides and nitrides, and so, during the cooling process, acicular ferrite is well formed. Carbides and nitrides develop fine grains by inhibiting grain growth. As a result, the low temperature Charpy absorbed energy of high vanadium steel is higher than that of low vanadium steel. In boron added steel, boron segregates at the prior austenite grain boundary, so that acicular ferrite formation occurs well during the cooling process. However, the granular bainite packet size of the boron added steel is larger than that of high vanadium steel because boron cannot effectively suppress grain growth. Therefore, the low temperature Charpy absorbed energy of the boron added steel is lower than that of the low vanadium steel. HAZ (heat affected zone) microstructure formation affects not only vanadium and boron but also the prior austenite grain size. In the HAZ specimen having large prior austenite grain size, acicular ferrite is formed inside the austenite, and granular bainite, bainitic ferrite, and martensite are also formed in a complex, resulting in a mixed acicular ferrite region with a high volume fraction. On the other hand, in the HAZ specimen having small prior austenite grain size, the volume fraction of the mixed acicular ferrite region is low because granular bainite and bainitic ferrite are coarse due to the large number of prior austenite grain boundaries.

Effects of Ni addition on continuous cooling transformation behavior of low carbon HSLA steels (저탄소${\cdot}$저합금 강의 연속 냉각 변태에 미치는 Ni의 영향)

  • Kang J. S.;Jun J. H.;Park C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.456-459
    • /
    • 2005
  • Continuous cooling transformation behaviors were studied fur low carbon HSLA steels containing three different level $(1\~3\;wt\%)$ of Ni addition. Thermo-mechanical processing (TMP) simulations to construct continuous cooling (CCT) diagram were conducted by using Gleeble system. As cooling rate increased, pearlite, granular bainite, acicular ferrite, bainitic ferrite and lath martensite were transformed from deformed austenite. Fully bainitic microstructure were developed at all cooling rate condition in high Ni containing steel due to hardenability increasing effects of Ni. Ni also influenced the transformation kinetics. At the slowest cooling rate of $0.3^{\circ}C/s$, transformation delayed with decreasing Ni contents because of the diffusion of substitutional alloy elements. However, cooling rate slightly increased to $1^{\circ}C/s$, transformation kinetics accelerated with decreasing Ni contents because nucleation of bainite was sluggish due to hardening of residual austenite.

  • PDF

A Study on the Bainite Phase Control of Direct-Quenched Low Carbon Steels (저탄소 직접 소입강의 베이나이트상 조절에 관한 연구)

  • An, Byeong-Gyu;Go, Yeong-Sang;Lee, Gyeong-Seop
    • Korean Journal of Materials Research
    • /
    • v.6 no.8
    • /
    • pp.841-851
    • /
    • 1996
  • In a recent investigation, the formation of bainite phase in direct-quenched low carbon non heat-treated steel was reported. In this study the effects of bainite phase on the mechanical properties of direct-quenched microalloying steels were investigated. By isothermal transformation at $480^{\circ}C$ for 7 sec., volume fraction of bainite lath was 15~20%, and the UTS and impact energy were increased. In this case $B_{ll}$ and $B_{lll}$ type bainite was observed and the fractography of impact test specimen showed a ductile fracture tendency. Isothermal transformation for 100sec., yielded 30% volume fraction of granular bainite and the mechanical properties were decreased. The f ractography of impact test specimen showed a brittle fracture tendency. The addition of Mo was more effective than B for improving impact energy because amounts of boron aditions were restricted to considerably lower levels, typically 10~ 30ppm. From this study, it is predicted that 15~20% volume fraction of lath bainite on the direct quenching process is procduced by addition of Mo up to 1.2wt. % and controlling the finish forging proc¬ess at $1000^{\circ}C$ and using oil as direct quenching media. This will improve mechanical properties of the direct- quenched steel.

  • PDF

Continuous Cooling Transformation, Microstructure and Mechanical Properties of High-Strength Low-Alloy Steels Containing B and Cu (B과 Cu가 포함된 고강도 저합금강의 연속냉각 변태와 미세조직 및 기계적 특성)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.525-530
    • /
    • 2013
  • This study investigated the continuous cooling transformation, microstructure, and mechanical properties of highstrength low-alloy steels containing B and Cu. Continuous cooling transformation diagrams under non-deformed and deformed conditions were constructed by means of dilatometry, metallographic methods, and hardness data. Based on the continuous cooling transformation behaviors, six kinds of steel specimens with different B and Cu contents were fabricated by a thermomechanical control process comprising controlled rolling and accelerated cooling. Then, tensile and Charpy impact tests were conducted to examine the correlation of the microstructure with mechanical properties. Deformation in the austenite region promoted the formation of quasi-polygonal ferrite and granular bainite with a significant increase in transformation start temperatures. The mechanical test results indicate that the B-added steel specimens had higher strength and lower upper-shelf energy than the B-free steel specimens without deterioration in low-temperature toughness because their microstructures were mostly composed of lower bainite and lath martensite with a small amount of degenerate upper bainite. On the other hand, the increase of Cu content from 0.5 wt.% to 1.5 wt.% noticeably increased yield and tensile strengths by 100 MPa without loss of ductility, which may be attributed to the enhanced solid solution hardening and precipitation hardening resulting from veryfine Cu precipitates formed during accelerated cooling.