DOI QR코드

DOI QR Code

Effects of Mo and Nb on Tensile and Charpy Impact Properties of API X80 Linepipe Steels

API X80 라인파이프 강의 인장 및 샤르피 충격 특성에 미치는 Mo 및 Nb의 영향

  • Received : 2011.06.09
  • Published : 2011.10.25

Abstract

In this study, three kinds of linepipe steels were processed by changing the amount of Mo and Nb to investigate the effects on microstructures, tensile and Charpy impact properties. All the specimens consisted of acicular ferrite, granular bainite and secondary phases such as martensite and austenite constituents (MA). The increase in Mo raised the volume fractions of the granular bainite and MA, and raised the number of fine precipitates, which increased the yield and tensile strengths and decreased the upper self energy and energy transition temperatures. In the steel having less Mo and more Nb, the volume fractions of the granular bainite and MA decreased, and a finer microstructure was observed. This microstructure suppressed the formation of separation during Charpy impact testing and led to a higher upper shelf energy and lower energy transition temperature, while the yield and tensile strengths were lower than those of the steels with more Mo and less Nb.

Keywords

References

  1. J.H. Cheng, J.D. Embury, M.T. Shehata, J.D. Boyd, and D.B. McCutcheon, Can. Metall. Q. 21, 299 (1982). https://doi.org/10.1179/000844382795243632
  2. API Specification 5L, American Petroleum Institute (2000).
  3. ASTM Standard E23-02, Standard Test Method for Notched Bar Impact Testing of Metallic Materials ASTM, West Conshohocken, PA, USA (2002).
  4. M. Diaz-Fuentes, A. Iza-Mendid, and I. Gutierrez, Metall. Mater. Trans. A 34, 2505 (2003). https://doi.org/10.1007/s11661-003-0010-7
  5. S.Y. Hang, S.Y. Shin, C-h. Seo, H. Lee, J-H. Bae, K. Kim, S. Lee, and N.J. Kim, J. Kor. Inst. Met. & Mater. 46, 788 (2008).
  6. Z. Tang and W. Strumpt, Materials Characterization 59, 717 (2008). https://doi.org/10.1016/j.matchar.2007.06.001
  7. H.W. Swift, J. Mech. Phys. Solids 1, 1 (1952). https://doi.org/10.1016/0022-5096(52)90002-1
  8. J.H. Hollomon, Trans. AIME 162, 268 (1945).
  9. T. Araki, Atlas for Bainitic Microstructures, p.1 ISIJ, Tokyo, Japan (1992).
  10. G. Krauss and S.W. Thompson, ISIJ Intern. 35, 937 (1995). https://doi.org/10.2355/isijinternational.35.937
  11. A.P. Coldren, R.L. Cryderman, and M. Semchyshen, Steel Strengthening Mechanisms, p.15, Climax Moly, Comp. (1967).
  12. W-B. Lee, S-G. Hong, C-G. Park, and S-H. Park, Metall. Mater. Trans. A 33, 1689 (2002). https://doi.org/10.1007/s11661-002-0178-2
  13. M.F. Ashby, Oxide Dispersion Strengthening, (eds. G.S. Ansell, T.D. Cooper and F.V. Lenel), p.143, New York (1958).
  14. M. Toyoda and R. Deny, Proc. Of the Intern. Pipe Dreamer's Conf., p.323, Scientific Surveys, Ltd., Yokohama, Japan (2002).
  15. N. Okumura, Met. Sci. 17, 581 (1983).
  16. F.B. Pickering and T. Gladman, ISI Spec. Rep. p. 81 (1961).
  17. S.Y. Hang, S.Y. Shin, S. Lee, J-H. Bae, and K. Kim, J. Kor. Inst. Met. & Mater. 47, 523 (2009).
  18. R. Barbosz, F. Boratto, S. Yue, and J.J. Jonas, Processing, Microstrucutre and Properties of HSLA Steels (eds. A.J. DeArdo), p.51, Minerals, Mater. & Met. Soc. AIME, Warrendale, USA, (1998).
  19. C.H. Lee, H.K.D.H. Bhadeshia, and H.-C. Lee, Mater. Sci. Eng. A 360, 249 (2003). https://doi.org/10.1016/S0921-5093(03)00477-5
  20. S.-C. Wang and J.-R. Yang, Mater. Sci. Eng. A, 154, 43 (1992). https://doi.org/10.1016/0921-5093(92)90361-4
  21. E. Smith, Proc. Conf. On the Physical Basis of Yield and Fracture, Physics Society, Oxford 36 (1966).
  22. G. T. Hahn, B. L. Averbach, W. S. Owen, and M. Cohen, Fracture (eds. B. L. Averbach et al), John Wiley and Sons, NY 91 (1959).
  23. C. J. McMahon and M. Cohen, Acta Mater., 14, 591 (1965).
  24. J. H. Chen, G. Z. Wang, C. Yan, H. Ma, and L. Zhu, Int. J. Frac., 83, 105 (1997). https://doi.org/10.1023/A:1007306932437
  25. Sung Kyu Kim, Ph.D. Thesis, p.26, The Pohang University of Science and Technology, Gyungbuk, Korea (2001).
  26. G. E. Dieter, Mechanical Metallurgy, p.261, McGraw-Hill, London (1988).
  27. Y.M. Kim, S.Y. Shin, H. Lee, B. Hwang, S. Lee, and N.J. Kim , Mater. Trans. A 38, 1731 (2007). https://doi.org/10.1007/s11661-007-9197-3
  28. S.Y. Shin, S. Hong, J-H. Bae, K. Kim, and S. Lee, J. Kor. Inst. Met. & Mater. 47, 155 (2009).
  29. I. Tamura, H. Sekine, T. Tanaka, and C. Ouchi, Thermomechanical Processing of High-strength Low-alloy Steels, Butterworth & Co., Ltd. (1988).