Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.8.478

Effect of Rolling Conditions on Microstructure and Mechanical Properties of Thick Steel Plates for Offshore Platforms  

Kim, Jongchul (Technical Research Center, Hyundai Steel Company)
Suh, Yonhchan (Technical Research Center, Hyundai Steel Company)
Hwang, Sungdoo (Technical Research Center, Hyundai Steel Company)
Shin, Sang Yong (School of Materials Science and Engineering, University of Ulsan)
Publication Information
Korean Journal of Materials Research / v.28, no.8, 2018 , pp. 478-488 More about this Journal
Abstract
In this study, three kinds of steels are manufactured by varying the rolling conditions, and their microstructures are analyzed. Tensile and Charpy impact tests are performed at room temperature to investigate the correlation between microstructure and mechanical properties. In addition, heat affected zone(HAZ) specimens are fabricated through the simulation of the welding process, and the HAZ microstructure is analyzed. The Charpy impact test of the HAZ specimens is performed at $-40^{\circ}C$ to investigate the low temperature HAZ toughness. The main microstructures of steels are quasi-polygonal ferrite and pearlite with fine grains. Because coarse granular bainite forms with an increasing finish rolling temperature, the strength decreases and elongation increases. In the steel with the lowest reduction ratio, coarse granular bainite forms. In the HAZ specimens, fine acicular ferrites are the main features of the microstructure. The volume fraction of coarse bainitic ferrite and granular bainite increases with an increasing finish rolling temperature. The Charpy impact energy at $-40^{\circ}C$ decreases with an increasing volume fraction of bainitic ferrite and granular bainite. In the HAZ specimen with the lowest reduction ratio, coarse bainitic ferrite and granular bainite forms and the Charpy impact energy at $-40^{\circ}C$ is the lowest.
Keywords
thick steel plates; rolling conditions; tensile properties; charpy impact properties; heat affected zone;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. C. Cheng, C. Yu, T. C. Yang, C. Y. Huang, H. C. Lin and R.-K. Shiue, Arch. Metall. Mater., 63, 167 (2018).
2 D. S. Liu, Q. L. Li and T. Emi, Metall. Mater. Trans. A, 42, 1349 (2011).   DOI
3 Y. L. Zhou, T. Jia, X. J. Zhang, Z. Y. Liu and R. D. K. Misra, Mater. Sci. Eng., A, 626, 352 (2015).   DOI
4 B. L. Bramfitt and J. G. Speer, Metall. Trans. A, 21, 817 (1990).   DOI
5 J. H. Chen, Y. Kikut, T. Araki, M. Yoned and Y. Matsuda, Acta Metall. 32, 1779 (1984).   DOI
6 C. M. Kim, J. B. Lee and W. Y. Choo, Proc. 13th Int. Conf. Offshore and Polar Eng., Honolulu, Hawaii, 90 (2003).
7 B. C. Kim, S. Lee, N. J. Kim and D. Y. Lee, Metall. Mater. Trans. A, 22A, 139 (1991).
8 N. Yurioka, Weld. World, 35, 375 (1995).
9 R. E. Dolby, Weld. Res. Int., 7, 298 (1977).
10 Y. U. Zhang, X. Li and H. Ma, Metall. Mater. Trans. B, 47, 2148 (2016).   DOI
11 X. L. Wang, Y. T. Tsai, J. R. Yang, Z. Q. Wang, X. C. Li, C. J. Shang and R. D. K. Misra, Weld, World, 61, 1155 (2017).   DOI
12 M. Chapa, ISIJ Int., 42, 1288 (2002).   DOI
13 A. D. Schino and C. Guarnaschelli, Mater. Lett., 63, 1968 (2009).   DOI
14 A. D. Schino, L. Alleva and M. Guagnelli, Mater. Sci. Forum, 860, 715 (2012).
15 C. Yu, T. C. Yang, C. Y. Huang and R. K. Shiue, Metall. Mater. Trans. A, 47A, 4777 (2016).
16 S. K. Dhua, D. Mukerjee and D. S. Sarma, Metall. Mater. Trans. A, 32A, 2259 (2001).
17 B. Hwang, C. G. Lee and S. J. Kim, Metall. Mater. Trans. A, 42A, 717 (2011).
18 A. D. Schino and P. E. D. Nunzio, Mater. Lett., 186, 86 (2017).   DOI
19 M. Hamada, Y. Fukada and Y. Komiz, ISIJ Int., 35, 1196 (1995).   DOI
20 S. F. Medina, ISIJ Int., 39, 930 (1999).   DOI
21 T. C. Yang, C. Y. Huang, T. C. Cheng, C. Yu and R. K. Shiue, Adv. Mater. Res., 936, 1312 (2014).   DOI
22 G. Heigl, H. Lengauer and P. Hodnik, Steel Res. Intl., 79, 931 (2008).   DOI
23 T. Araki, Atlas for Bainitic Microstructures, ISIJ, Tokyo, Japan, 1 (1992).
24 G. Krauss and S.W. Thompson, ISIJ Int., 35, 937 (1995).   DOI
25 H. K. D. H. Bhadeshia, Mater. Sci. Eng., A, A378, 34 (2004).
26 D. Deng and S. Kiyoshima, Comp. Mater. Sci., 62, 23 (2012).   DOI
27 H. Qiu, M. Enoki, Y. Kawaguchi and T. Kishi, ISIJ Int., 40, 34 (2000).   DOI
28 N. J. Kim, A. J. Yang and G. Thomas, Metall. Trans. A, 16A, 471 (1985).
29 G. E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Co., New York (1988).
30 G. Krauss, Steels Processing, Structure, and Performance, Asm Intl. (2005).