Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.3.139

Effect of Vanadium and Boron on Microstructure and Low Temperature Impact Toughness of Bainitic Steels  

Huang, Yuanjiu (School of Materials Science and Engineering, University of Ulsan)
Lee, Hun (School of Materials Science and Engineering, University of Ulsan)
Cho, Sung Kyu (Technical Research Center, Hyundai Steel Company)
Seo, Jun Seok (Technical Research Center, Hyundai Steel Company)
Kwon, Yongjai (School of Materials Science and Engineering, University of Ulsan)
Lee, Jung Gu (School of Materials Science and Engineering, University of Ulsan)
Shin, Sang Yong (School of Materials Science and Engineering, University of Ulsan)
Publication Information
Korean Journal of Materials Research / v.31, no.3, 2021 , pp. 139-149 More about this Journal
Abstract
In this study, three kinds of bainitic steels are fabricated by controlling the contents of vanadium and boron. High vanadium steel has a lot of carbides and nitrides, and so, during the cooling process, acicular ferrite is well formed. Carbides and nitrides develop fine grains by inhibiting grain growth. As a result, the low temperature Charpy absorbed energy of high vanadium steel is higher than that of low vanadium steel. In boron added steel, boron segregates at the prior austenite grain boundary, so that acicular ferrite formation occurs well during the cooling process. However, the granular bainite packet size of the boron added steel is larger than that of high vanadium steel because boron cannot effectively suppress grain growth. Therefore, the low temperature Charpy absorbed energy of the boron added steel is lower than that of the low vanadium steel. HAZ (heat affected zone) microstructure formation affects not only vanadium and boron but also the prior austenite grain size. In the HAZ specimen having large prior austenite grain size, acicular ferrite is formed inside the austenite, and granular bainite, bainitic ferrite, and martensite are also formed in a complex, resulting in a mixed acicular ferrite region with a high volume fraction. On the other hand, in the HAZ specimen having small prior austenite grain size, the volume fraction of the mixed acicular ferrite region is low because granular bainite and bainitic ferrite are coarse due to the large number of prior austenite grain boundaries.
Keywords
bainitic steel plates; heat affected zone; microstructure; charpy impact properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. D. Schino, L. Alleva and M. Guagnelli, Mater. Sci. Forum, 715-716, 860 (2012).   DOI
2 C. Yu, T. C. Yang, C. Y. Huang and R. K. Shiue, Metall. Mater. Trans. A, 47A, 4777 (2016).
3 S. K. Dhua, D. Mukerjee and D. S. Sarma, Metall. Mater. Trans. A, 32A, 2259 (2001).
4 B. Hwang, C. G. Lee and S. J. Kim, Metall. Mater. Trans. A, 42A, 717 (2011).
5 T. C. Yang, C. Y. Huang, T. C. Cheng, C. Yu and R. K. Shiue, Adv. Mater. Res., 936, 1312 (2014).   DOI
6 G. Heigl, H. Lengauer and P. Hodnik, Steel Res. Int., 79, 931 (2008).   DOI
7 B. C. Kim, S. Lee, N. J. Kim and D. Y. Lee, Metall. Mater. Trans. A, 22A, 139 (1991).
8 B. L. Bramfitt and J. G. Speer, Metall. Trans. A, 21, 817 (1990).   DOI
9 N. Yurioka, Weld. World, 35, 375 (1995).
10 R. E. Dolby, Weld. Res. Int., 7, 298 (1977).
11 Y. Zhang, X. Li and H. Ma, Metall. Mater. Trans. B, 47, 2148 (2016).   DOI
12 X. L. Wang, Y. T. Tsai, J. R. Yang, Z. Q. Wang, X. C. Li, C. J. Shang and R. D. K. Misra, Weld. World, 61, 1155 (2017).   DOI
13 Y. Q. Zhang, H. Q. Zhang, W. M. Liu and H. Hou, Mater. Sci. Eng., A, 499, 182 (2009).   DOI
14 J. Hu, L.-X. Du, J.-J. Wang and C.-R. Gao, Mater. Sci. Eng., A, 577, 161 (2013).   DOI
15 H. K. Sung, S. Y. Shin, B. Hwang, C. G. Lee and S. Lee, Metall. Mater. Trans. A, 43A, 3703 (2012).
16 S. Kim, Y. Kang and C. Lee, Mater. Charact., 116, 65 (2016).   DOI
17 T. Araki, Atlas for Bainitic Microstructures, p. 1, ISIJ, Tokyo, Japan (1992).
18 G. Krauss and S. W. Thompson, ISIJ Int., 35, 937 (1995).   DOI
19 H. K. D. H. Bhadeshia, Mater. Sci. Eng., A, A378, 34 (2004).   DOI
20 D. Deng and S. Kiyoshima, Comput. Mater. Sci., 62, 23 (2012).   DOI
21 H. Qiu, M.Enoki, Y. Kawaguchi and T. Kishi, ISIJ Int., 40, S34 (2000).   DOI
22 M. M. Giangregorio, M. Losurdo, G. V. Bianco, E. Dilonardo, P. Capezzuto and G. Bruno, Mater. Sci. Eng., B, 179, 559 (2013).
23 B. Hutchinson, J. Komenda, G. S. Rohrer and H. Beladi, Acta Mater., 97, 380 (2015).   DOI
24 D. S. Liu, Q. L. Li and T. Emi, Metall. Mater. Trans. A, 42, 1349 (2011).   DOI
25 A. D. Schino and C. Guarnaschelli, Mater. Lett., 63, 1968 (2009).   DOI
26 Y. L. Zhou, T. Jia, X. J. Zhang, Z. Y. Liu and R. D. K. Misra, Mater. Sci. Eng., A, 626, 352 (2015).   DOI
27 M. Chapa, S. F. Medina, V. Lopez and B. Fernandez, ISIJ Int., 42, 1 (2002).   DOI