• Title/Summary/Keyword: granular activated carbon

Search Result 249, Processing Time 0.022 seconds

Effective Removal of Gaseous BTEX Using VPB During Treatment of Briny Produced Water (VPB를 이용한 효율적인 Gas 상태의 BTEX 제거에 관한 연구)

  • Kwon, Soondong
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.167-177
    • /
    • 2011
  • Billions of barrels of briny produced water are generated in the United States every year during oil and gas production. The first step toward recovering or reusing this water is to remove the hazardous organics dissolved in the briny produced water. Biological degradation of hazardous volatile compound could be possible regardless of salinity if they were extracted from briny water. In the current work, the effectiveness of a vapor phase biofilter to degrade the gas-phase contaminants (benzene, toluene, ethylbenzene and xylenes, BTEX) extracted from briny produced water was evaluated. The performance of biofilter system responded well to short periods when the BTEX feed to the biofilter was discontinued. To challenge the system further, the biofilter was subjected to periodic spikes in inlet BTEX concentration as would be expected when it is coupled to a Surfactant-Modified Zeolite (SMZ) bed. Results of these experiments indicate that although the BTEX removal efficiency declined under these conditions, it stabilized at 75% overall removal even when the biofilter was provided with BTEX-contaminated air only 8 hours out of every 24 hours. Benzene removal was found to be the most sensitive to time varying loading conditions. A passive, granular activated carbon bed was effective at attenuating and normalizing the peak BTEX loadings during SMZ regeneration over a range of VOC loads. Field testing of a SMZ bed coupled with an activated carbon buffering/biofilter column verified that this system could be used to remove and ultimately biodegrade the dissolved BTEX constituents in briny produced water.

Enhanced sewage effluent treatment with oxidation and adsorption technologies for micropollutant control: current status and implications (미량오염물질 관리를 위한 산화 및 흡착 기반 하수 방류수 강화처리 기술의 연구 동향 및 시사점)

  • Choi, Sangki;Lee, Woongbae;Kim, Young Mo;Hong, Seok Won;Son, Heejong;Lee, Yunho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.2
    • /
    • pp.59-79
    • /
    • 2022
  • Conventional wastewater treatment plants (WWTPs) do not fully remove micropollutants. Enhanced treatment of sewage effluents is being considered or implemented in some countries to minimize the discharge of problematic micropollutants from WWTPs. Representative enhanced sewage treatment technologies for micropollutant removal were reviewed, including their current status of research and development. Advanced oxidation processes (AOPs) such as ozonation and UV/H2O2 and adsorption processes using powdered (PAC) and granular activated carbon (GAC) were mainly discussed with focusing on process principles for the micropollutant removal, effect of process operation and water matrix factors, and technical and economic feasibility. Pilot- and full-scale studies have shown that ozonation, PAC, and GAC can achieve significant elimination of various micropollutants at economically feasible costs(0.16-0.29 €/m3). Considering the current status of domestic WWTPs, ozonation and PAC were found to be the most feasible options for the enhanced sewage effluent treatment. Although ozonation and PAC are all mature technologies, a range of technical aspects should be considered for their successful application, such as energy consumption, CO2 emission, byproduct or waste generation, and ease of system construction/operation/maintenance. More feasibility studies considering domestic wastewater characteristics and WWTP conditions are required to apply ozonation or PAC/GAC adsorption process to enhance sewage effluent treatment in Korea.

The preparation of surface-modified granular activated carbon (GAC) to enhance Perfluorooctanoic acid (PFOA) removal and evaluation of adsorption behavior (입상 활성탄 표면 개질을 통한 과불화옥탄산 (PFOA) 제거 향상 및 특성 평가)

  • Jeongwoo Shin;Byungryul An
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.4
    • /
    • pp.177-186
    • /
    • 2023
  • Perfluorooctanoic acid(PFOA) was one of widely used per- and poly substances(PFAS) in the industrial field and its concentration in the surface and groundwater was found with relatively high concentration compared to other PFAS. Since various processes have been introduced to remove the PFOA, adsorption using GAC is well known as a useful and effective process in water and wastewater treatment. Surface modification for GAC was carried out using Cu and Fe to enhance the adsorption capacity and four different adsorbents, such as GAC-Cu, GAC-Fe, GAC-Cu(OH)2, GAC-Fe(OH)3 were prepared and compared with GAC. According to SEM-EDS, the increase of Cu or Fe was confirmed after surface modification and higher weight was observed for Cu and Fe hydroxide(GAC-Cu(OH)2 and GAC-Fe(OH)3, respectively). BET analysis showed that the surface modification reduced specific surface area and total pore volumes. The highest removal efficiency(71.4%) was obtained in GAC-Cu which is improved by 17.9% whereas the use of Fe showed lower removal efficiency compared to GAC. PFOA removal was decreased with increase of solution pH indicating electrostatic interaction governs at low pH and its effect was decreased when the point of zero charges(pzc) was negatively increased with an increase of pH. The enhanced removal of PFOA was clearly observed in solution pH 7, confirming the Cu in the surface of GAC plays a role on the PFOA adsorption. The maximum uptake was calculated as 257 and 345 ㎍/g for GAC and GAC-Cu using Langmuir isotherm. 40% and 80% of removal were accomplished within 1 h and 48 h. According to R2, only the linear pseudo-second-order(pso) kinetic model showed 0.98 whereas the others obtained less than 0.870.

The Removal Characteristics of Bromate using Various Materials in GAC Process (다양한 재질의 활성탄을 이용한 GAC 공정에서의 브로메이트 제거 특성)

  • Son, Hee-Jong;Choi, Young-Ik;Jung, Chul-Woo;Park, Jin-Sik;Jang, Seong-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.747-752
    • /
    • 2009
  • This research was performed by means of several different virgin granular activated carbons (GAC) made of each coal, coconut and wood, and the GACs were investigated for an adsorption performance of bromate in a continuous adsorption column. Breakthrough behavior was investigated that the breakthrough points of the virgin two coals-, coconut- and wood-based GACs were observed as 9252 bed volume (BV), 6821 BV, 5291 BV and 2431 BV, respectively. The experimental results of adsorption capacity (X/M) for bromate showed that two coal- based GACs were highest (1334.5 and 798.2 ${\mu}g$/g), the coconut-based GAC was intermediate (668.6 ${\mu}g$/g) and the wood-based GAC was lowest (156.8 ${\mu}g$/g). The X/M of the coal-based GACs was 2~8.5 times higher than the X/M of the coconut-based and wood-based GACs. The results of carbon usage rates (CURs) for the virgin two coal-, coconut- and wood-based GACs were shown as 0.19, 0.25, 0.33 and 0.71 g/day respectively. The adsorption capacity, k values, were also investigated by means of the GACs for bromate. The k values of two coal-, coconut- and wood- based GACs for bromate were found to be 121.3, 76.7, 43.3 and 14.6 respectively. This results suggested that using the virgin GAC made of coal was the best selection for removal of bromate in the water treatment for an advanced treatment.

Effect of Hydrogen Sulfide Removal by Biofilter Seeded with Pseudomonas putida B2 (Pseudomonas putida B2가 접종된 Biofilter의 황화수소제거 효과)

  • Yoon, Ji-Yong;Lee, Soo-Choul;Kwon, Il;Sung, Chang-Keun
    • KSBB Journal
    • /
    • v.16 no.3
    • /
    • pp.286-289
    • /
    • 2001
  • A beterotrophic Pseudomonas putida B2 was used to treat of hydrogen sulfide containing gas. The experimental approach involved operating two indentical bench-scale biofilters with media consisting of a mixture of peatmoss, perlite and granular activated carbon(GAC). One column was seeded with Pseudomonas putida B2 and the other was left unseeded. The biofilter was operated for 16 days under EBRT for 20-40 sec, at a temperature of 25-30$^{\circ}C$ and a hydrogen sulfide concentration of 40-190 ppm. The biofilter inocculated with P.putida B2 exhibited high hydrogen sulfide removal efficiency, average of 95%, at a gydrogen sulfide concentration of 40-190 ppm (flow rate 3.6 L/min). However, at a shock loading of 190 ppm the biofiter showed a removal efficiency of 78.9% and the control only showed a removal efficiency of 31.6%. The critical load of this biofilter was 14.83 g/㎥hr, and the critical load of the control column was 4.93 g/㎥hr. These results suggest that P. putida B2 has the potential to be used as a $H_2S$ removal agent in a biofilter.

  • PDF

Evaluation of Microbes through Microfiltration within the Water Treatment Processes (정밀여과막 및 입상활성탄을 이용한 수처리 공정에 따른 박테리아 거동 평가)

  • Shim, Moon Jung;Lim, Jae Won;Kim, Tae Ue
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.3
    • /
    • pp.230-236
    • /
    • 2016
  • Economic growth has increased the living standards around the world. Water pollution, in particular, is a public relations issue because it poses a direct threat to everyone's lives. As of recently, the production of taste and odor (T&O) compounds has been a common problem in the water industry. The adsorption process using granular activated carbon (GAC) has been the most widely used process. The objectives of this study were to evaluate the microorganisms before and after the backwashing of GAC and to identify the species of the microorganisms found. Five dominants microorganisms were confirmed after the microfiltration process from backwashing of GAC, and the dominant bacterial species were found to be ${\beta}$-proteobacterium species, Porphyrobacter donghaensis, Polaromonas rhizophaerae, Hydrogenophaga species, and Pseudonocardia species. However, when UV treatment after microfiltration was performed, Hydrogenophaga species and Psedonocardia species were eliminated. Herein, I conclude that the UV treatment post microfiltration process is more efficient than microfiltration process alone. The findings of this study may provide useful information regarding the management of microfiltration process.

Study on Feasibility of Fluidized Bed Membrane Reactor with Granular Activated Carbon Particles as Fluidized Media to Treat Metal-plating Wastewater (도금폐수처리를 위한 입상활성탄 유동 메디아 적용 유동상 멤브레인 여과기술의 적용가능성 평가에 관한 연구)

  • Chang, Soomin;Kwon, Deaeun;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.28 no.4
    • /
    • pp.252-259
    • /
    • 2018
  • An acidic, real metal-plating wastewater was treated by a fluidized bed membrane reactor introduced with granular activated carbon (GAC) as fluidized media. With GAC fluidization, there was no increase in suction pressure with time at each flux set-point applied. At neutral solution pH, much less fouling rate was observed than acidic pH under GAC fluidization. Higher solution pH resulted in the increase in particle size in metal-finishing wastewater, thus producing a less dense cake structure on membrane. More than 95% of chemical oxygen demand was observed from the fluidized bed membrane reactor under GAC fluidization. Total suspended solid concentration in membrane permeate was near zero. At the raw wastewater pH, no removal of copper and chromium by the fluidized bed membrane reactor was observed. As the pH was increased to 7.0, removal efficiency of copper and chromium was increased considerably to 99 and 94%, respectively. Regardless of solution pH tested, more than 95% of cyanide was removed possibly due to the strong adsorption of organic-cyanide complex on GAC in fluidized bed membrane reactor.

The Removal of Toluene by a Granular Activated Carbon Bioreactor using Yeast (Yeast와 입상활성탄을 이용한 미생물반응기의 휘발성유기화합물 분해 특성)

  • NamGung, Hyeong-Kyu;Shin, Seung-Kyu;Ahmed, Zubair;Song, Ji-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.12
    • /
    • pp.1218-1224
    • /
    • 2008
  • A liquid culture of yeast "Candida tropicalis" was used in a fluidized bioreactor to achieve high removal efficiencies of volatile organic compounds (VOCs). In this study, granular activated carbon (GAC) was used as a fluidized material to improve adsorptive capacity as well as mass transfer of gaseous toluene, the model VOC. The GAC fluidized bioreactor demonstrated toluene removal efficiencies ranging from 50 to 80%, when inlet toluene loading varied in a range between 13.1 and 37.4 g/m$^3$-hr. The maximum elimination capacity determined in the GAC fluidized bioreactor was 172 g/m$^3$-hr at a toluene loading of 291 g/m$^3$-hr. Transient loading experiments revealed that the removal efficiency was remained unchanged during an increased loading period, and toluene introduced to the bioreactor was first absorbed to GAC and then slowly desorbed and became available to the yeast culture. Hence the fluidized GAC helped to achieve an improved mass transfer between the gas and liquid phases, resulting in high toluene removal capacity. Consequently, the GAC fluidized bioreactor using C. tropicalis can be successfully applied for the removal of VOCs, and is a feasible alternative over conventional processes such as packed-bed biofilters.

Isotherms, Kinetics and Thermodynamic Parameters Studies of New Fuchsin Dye Adsorption on Granular Activated Carbon (입상 활성탄에 대한 New Fuchsin 염료흡착의 등온선, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.632-638
    • /
    • 2014
  • Batch adsorption studies including equilibrium, kinetics and thermodynamic parameters for the adsorption of new fuchsin dye using granular activated carbon were investigated with varying the operating variables such as initial concentration, contact time and temperature. Equilibrium adsorption data were fitted into Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherms. Adsorption equilibrium was mostly well described by Langmuir Isotherm. From the estimated separation factor of Langmuir ($R_L$ = 0.023), and Freundlich (1/n = 0.198), this process could be employed as an effective treatment for the adsorption of new fuchsin dye. Also based on the adsorption energy (E = 0.002 kJ/mol) from Dubinin-Radushkevich isotherm and the adsorption heat constant (B = 1.920 J/mol) from Temkin isotherm, this adsorption is physical adsorption. From kinetic experiments, the adsorption reaction processes were confirmed following the pseudo second order model with good correlation. The intraparticle diffusion was a rate controlling step. Thermodynamic parameters including changes of free energy, enthalpy, and entropy were also calculated to predict the nature of adsorption. The change of enthalpy (92.49 kJ/mol) and activation energy (11.79 kJ/mol) indicated the endothermic nature of adsorption processes. The change of entropy (313.7 J/mol K) showed an increasing disorder in the adsorption process. The change of free energy found that the spontaneity of process increased with increasing the adsorption temperature.

Adsorption Characteristics of Brilliant Green by Coconut Based Activated Carbon : Equilibrium, Kinetic and Thermodynamic Parameter Studies (야자계 입상 활성탄에 의한 brilliant green의 흡착 특성 : 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.198-205
    • /
    • 2019
  • The adsorption equilibrium, kinetic, and thermodynamic parameters of brilliant green adsorbed by coconut based granular activated carbon were determined from various initial concentrations ($300{\sim}500mg\;L^{-1}$), contact time (1 ~ 12 h), and adsorption temperature (303 ~ 323 K) through batch experiments. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin, Harkins-Jura, and Elovich isotherm models. The estimated Langmuir dimensionless separation factor ($R_L=0.018{\sim}0.040$) and Freundlich constant ($n^{-1}=0.176{\sim}0.206$) show that adsorption of brilliant green by activated carbon is an effective treatment process. Adsorption heat constants ($B=12.43{\sim}17.15J\;mol^{-1}$) estimated by the Temkin equation corresponded to physical adsorption. The isothermal parameter ($A_{HJ}$) by the Harkins-Jura equation showed that the heterogeneous pore distribution increased with increasing temperature. The maximum adsorption capacity by the Elovich equation was found to be much smaller than the experimental value. The adsorption process was best described by the pseudo second order model, and intraparticle diffusion was a rate limiting step in the adsorption process. The intraparticle diffusion rate constant increased because the dye activity increased with increases in the initial concentration. Also, as the initial concentration increased, the influence of the boundary layer also increased. Negative Gibbs free energy ($-10.3{\sim}-11.4kJ\;mol^{-1}$), positive enthalpy change ($18.63kJ\;mol^{-1}$), and activation energy ($26.28kJ\;mol^{-1}$) indicate respectively that the adsorption process is spontaneous, endothermic, and physical adsorption.