• Title/Summary/Keyword: granitic groundwater

Search Result 63, Processing Time 0.022 seconds

Characterization of Groundwater Colloids From the Granitic KURT Site and Their Roles in Radionuclide Migration

  • Baik, Min-Hoon;Park, Tae-Jin;Cho, Hye-Ryun;Jung, Euo Chang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.279-296
    • /
    • 2022
  • The fundamental characteristics of groundwater colloids, such as composition, concentration, size, and stability, were analyzed using granitic groundwater samples taken from the KAERI Underground Research Tunnel (KURT) site by such analytical methods as inductively coupled plasma-mass spectrometry, field emission-transmission electron microscopy, a liquid chromatography-organic carbon detector, and dynamic light scattering technique. The results show that the KURT groundwater colloids are mainly composed of clay minerals, calcite, metal (Fe) oxide, and organic matter. The size and concentration of the groundwater colloids were 10-250 nm and 33-64 ㎍·L-1, respectively. These values are similar to those from other studies performed in granitic groundwater. The groundwater colloids were found to be moderately stable under the groundwater conditions of the KURT site. Consequently, the groundwater colloids in the fractured granite system of the KURT site can form stable radiocolloids and increase the mobility of radionuclides if they associate with radionuclides released from a radioactive waste repository. The results provide basic data for evaluating the effects of groundwater colloids on radionuclide migration in fractured granite rock, which is necessary for the safety assessment of a high-level radioactive waste repository.

Geochemical Characteristics of Groundwater in Korea with Different Aquifer Geology and Temperature -Comparative Study with Granitic Groundwater (대수층 지질 및 온도에 따른 국내 지하수의 지구화학적 특징 -화강암질암내 지하수와의 비교연구)

  • 이종운;전효택;전용원
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.4
    • /
    • pp.212-222
    • /
    • 1997
  • Geochemistry of metasedimentary groundwaters and spar waters has been studied in comparison with that of granitic groundwaters in Korea. Metasedimentary groundwaters show $Ca^{2+]$-${HCO_3}^-$ type at depth and low sodium concentrations compared with granitic groundwaters, which is due to the lack of plagioclase in their aquifer mineralogy and, therefore, the predominant reaction of calcite dissolution. According to factor analysis, metasedimentary groundwaters at 100~300 m depth are represented by 1) the dissolution of calcite and Mg-carbonates, 2) transformation of kaolinite to illite, and 3) the presence of sodium as not the product of plagioclase dissolution but a artificial pollutant. Discriminant function between the granitic and metasedimentary groundwaters shows a good discriminating ability with 81.8%, and groundwaters of volcanic aquifer, which has abundant plagioclase, are included in the granitic group by this function. Spa water samples show the result of active water-rock interaction due to high temperature.

  • PDF

국내 심부 암반지하수의 수리지구화학 진화와 관련된 고농도 불소 산출 특성

  • Kim Gyeong-Ho;Yun Seong-Taek;Chae Gi-Tak;Kim Seong-Yong;Gwon Jang-Sun;Go Yong-Gwon
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.101-104
    • /
    • 2005
  • To understand the geologic and hydrogeochemical controls on the occurrence of high fluoride concentrations in bedrock groundwaters in South Korea, we examined a total of 367 hydrochemistry data obtained from deep groundwater wells (avg, depth = 600 m) that were drilled for exploitation of hot springs. The fluoride concentrations were generally very high (avg. 5.65 mg/L) and exceeded the Drinking Water Standard (1.5 mg/L) in 72% of the samples, A significant geologic control of fluoride concentrations was observed: the highest concentrations occur in the areas of granitoids and granitic gneiss, while the lowest concentrations in the areas of volcanic and sedimentary rocks. In relation to the hydrochemical facies, alkaline $Na-HCO_3$ type waters had remarkably higher F concentrations than circum-neutral to slightly alkaline $Ca-HCO_3$ type waters. The Prolonged water-rock interaction occurring during the deep circulation of groundwater in the areas of granitoids and granitic gneiss is considered most important for the generation of high F concentrations. Under such condition, fluoride-rich groundwaters are likely formed through hydrogeochemical processes consisting of the removal of Ca from groundwater via calcite precipitation and/or cation exchange and the successive dissolution of plagioclase and F-bearing hydroxyl minerals (esp. biotite). Thus, groundwaters with high pH and very high Na/Ca ratio within granitoids and granitic gneiss are likely most vulnerable to the water supply problem in relation to the enriched fluorine.

  • PDF

Geochemical Characteristics of Deep Granitic Groundwater in Korea (국내 화강암질암내 심부지하수의 지구화학적 특성)

  • 이종운;전효택;전용원
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.4
    • /
    • pp.199-211
    • /
    • 1997
  • As a part of study on geological disposal of radioactive waste, hydrogeochemical characteristics of deep granitic groundwater in Korea were investigated through the construction of a large geochemical dataset of natural water, the examination on the behaviour of dissolved constituents, and the consideration of phase stability based on thermodynamic approach. In granitic region, the contents of total dissolved solids increase progressively from surface waters to deep groundwaters, which indicates the presence of more concentrated waters at depth due to water-rock interaction. The chemical composition of groundwater evolves from initial $Ca^{2+}$-(C $l^{-}$+S $O_4$$^{2-}$) or $Ca^{2+}$-HC $O_3$$^{-}$ type to final N $a^{+}$-HC $O_3$$^{-}$ or N $a^{+}$-(C $l^{-}$+S $O_4$$^{2-}$) type, via $Ca^{2+}$-HC $O_3$$^{-}$ type. Three main mechanisms seem to control the chemical composition of groundwater in the granitic region; 1) congruent dissolution of calcite at shallower depth, 2) calcite precipitation and incongruent dissolution of plagioclase at deeper depth, and 3) kaolinite-smectite or/and kaolinite-illite reaction at equilibrium at deeper depth. The behaviour of dissolved major cations (C $a^{2+}$, $K^{+}$, $Mg^{2+}$, M $a^{+}$) and silica is likely to be controlled by these reactions.

  • PDF

Occurrence of U-minerals and Source of U in Groundwater in Daebo Granite, Daejeon Area (대전지역 대보 화강암내 우라늄 광물의 산출상태와 지하수내 우라늄의 기원)

  • Hwang, Jeong
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.399-407
    • /
    • 2013
  • Some groundwater in Korea contains high U concentrations, especially where two-mica granite occurs in the Daejeon area. The elemental U in the two-mica granite is lower than that in normal granites elsewhere in the world, and U-minerals have yet to be reported in the two-mica granite in the Daejeon area. This study focuses on investigating the occurrence of U-minerals serving as the U source in groundwater. In situ gamma ray spectrometry and mineralogical analyses using EPMA were performed. U-count anomalies were identified in a granitic dyke and in hydrothermally altered granite. Uraniferous granitic dykes occur along the contact zone between the two-mica granite and mica-schist. The uraniferous parts within the two-mica granite are developed in the hydrothermally altered zone, which contains numerous quartz veinlets within a fracture zone. Hydrothermal alteration is dominated by potassic and prophylitic alteration. Uraninite is a common U-mineral in granitic dykes and hydrothermally altered granite. Coffinite and uranophane occur in the hydrothermally altered granite. All of these U-minerals are commonly accompanied by hydrothermal alteration minerals such as muscovite, chlorite, epidote, and calcite. It is concluded that granitic dyke and hydrothermally altered granite are the main source rocks of U in groundwater.

Characterization of the Spatial Distribution of Fracture System at the Rock Block Scale in the Granitic Area (화강암지역의 암반블록규모 단열체계 분포특성 연구)

  • 김경수;배대석;김천수
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.198-209
    • /
    • 2002
  • To assess deep geological environment for the research and development of hish-level radioactive waste disposal, six boreholes of 3" in diameter were installed in two granitic areas. An areal extent of the rock block scale in the study sites was estimated by the lineament analysis from satellite images and shaded relief maps. The characterization of fracture system developed in rock block scale was carried out based on the acoustic televiewer logging in deep boreholes. In the Yuseong site, the granite rock mass was divided into the upper and lower zones at around -160m based on the probabilistic distribution characteristics of the geometric parameters such as orientation, fracture frequency, spacing and aperture size. Since the groundwater flow is dependent on the fracture system in a fractured rock mass, the correlation of the fracture frequency and cumulative aperture size to the hydraulic conductivity was also discussed.

EFFECT OF CARBONATE ON THE SOLUBILITY OF NEPTUNIUM IN NATURAL GRANITIC GROUNDWATER

  • Kim, B.Y.;Oh, J.Y.;Baik, M.H.;Yun, J.I.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.552-561
    • /
    • 2010
  • This study investigates the solubility of neptunium (Np) in the deep natural groundwater of the Korea Atomic Energy Research Institute Underground Research Tunnel (KURT). According to a Pourbaix diagram (pH-$E_h$ diagram) that was calculated using the geochemical modeling program PHREEQC 2.0, the redox potential and the carbonate ion concentration both control the solubility of neptunium. The carbonate effect becomes pronounced when the total carbonate concentration is higher than $1.5\;{\times}\;10^{-2}$ M at $E_h$ = -200 mV and the pH value is 10. Given the assumption that the solubility-limiting stable solid phase is $Np(OH)_4(am)$ under the reducing condition relevant to KURT, the soluble neptunium concentrations were in the range of $1\;{\times}\;10^{-9}$ M to $3\;{\times}\;10^{-9}$ M under natural groundwater conditions. However, the solubility of neptunium, which was calculated with the formation constants of neptunium complexes selected in an OECD-NEA TDB review, strongly deviates from the value measured in natural groundwater. Thus, it is highly recommended that a prediction of neptunium solubility is based on the formation constants of ternary Np(IV) hydroxo-carbonato complexes, even though the presence of those complexes is deficient in terms of the characterization of neptunium species. Based on a comparison of the measurements and calculations of geochemical modeling, the formation constants for the "upper limit" of the Np(IV) hydroxo-carbonato complexes, namely $Np(OH)_y(CO_3)_z^{4-y-2z}$, were appraised as follows: log $K^{\circ}_{122}\;=\;-3.0{\pm}0.5$ for $Np(OH)_2(CO_3)_2^{2-}$, log $K^{\circ}_{131}\;=\;-5.0{\pm}0.5$ for $Np(OH)_3(CO_3)^-$, and log $K^{\circ}_{141}\;=\;-6.0{\pm}0.5$ for $Np(OH)_4(CO_3)^{2-}$.

Reliability approach to groundwater flow analysis in underground excavation (지하굴착지반에서의 지하수 흐름에 관한 신뢰성 해석)

  • Jang, Yeon-Soo;Kim, Hong-Seong;Park, Jeong-Wong;Park, Joon-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.344-351
    • /
    • 2005
  • In this paper, a reliability-groundwater flow program is developed by coupling the 2-D finite element numerical groundwater flow program with first and second order reliability program. From the parametric study of hydraulic conductivity of soil layers, the increase of both mean and variance of hydraulic conductivity results in the increase of probability of exceeding the threshold hydraulic head. The probability of failure was more sensitive to parameters of weathered granitic soil and rock located at the middle and bottom of the excavation than those at the other locations. It can be recommended from this study that the reliability method, which can include the uncertainty of soil parameters, should be performed together with the deterministic analysis to compensate the weakness of the latter analysis for the groundwater flow problem of underground excavations.

  • PDF

Geochemistry and Sm-Nd isotope systematics of Precambrian granitic gneiss and amphibolite core at the Muju area, middle Yeongnam Massif (영남육괴 중부 무주 지역에 위치하는 선캠브리아기 화강편마암 및 앰피볼라이트 시추코아의 Sm-Nd 연대 및 지구화학적 특징)

  • Lee Seung-Gu;Kim Yongje;Kim Kun-Han
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.3 s.41
    • /
    • pp.127-140
    • /
    • 2005
  • The Samyuri area of Jeoksang-myeon, Muju-gun at the Middle Yeongnam Massif consists of granitic gneiss, porphyroblastic gneiss and leucocratic gneiss, which correspond to Precambrian Wonnam Series. Here we discuss a geochemical implication of the data based on major element composition, trace element, rare earth element (REE), Sm-Nd and Rb-Sr isotope systematics of the boring cores in the granite gneiss area. The boring cores are granitic gneiss (including biotite gneiss) and amphibolite. The major and trace element compositions of granitic gneiss and amphibolite suggest that the protolith belongs to TTG (Tonalite-Trondhjemite-Granodiorite) and tholeiitic series, respectively. Chondrte-normalized REE patterns vary in LREE, HREE and Eu anomalies. The granitic gneiss and amphibolite have Sm-Nd whole rock age of $2,026{\pm}230(2{\sigma})$ Ma with an initial Nd isotopic ratio of $0.50979{\pm}0.00028(2{\sigma})$ (initial ${\epsilon}_{Nd}=-4.4$), which suggests that the source material was derived from old crustal material. Particularly, this initial ${\epsilon}$ Nd value belongs to the range of the geochemical evolution of Archean basement in North-China Craton, and also corresponds to the initial Nd isotope evolution line by Lee et al. (2005). In addition, chondrite-normalized REE pattern and initial Nd value of amphibolite are very similar to those of juvenile magma in crustal formation process.