Browse > Article

Geochemistry and Sm-Nd isotope systematics of Precambrian granitic gneiss and amphibolite core at the Muju area, middle Yeongnam Massif  

Lee Seung-Gu (Groundwater and Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resources)
Kim Yongje (Groundwater and Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resources)
Kim Kun-Han (Geological and Environmental Hazard Division, Korea Institute of Geoscience and Mineral Resources)
Publication Information
The Journal of the Petrological Society of Korea / v.14, no.3, 2005 , pp. 127-140 More about this Journal
Abstract
The Samyuri area of Jeoksang-myeon, Muju-gun at the Middle Yeongnam Massif consists of granitic gneiss, porphyroblastic gneiss and leucocratic gneiss, which correspond to Precambrian Wonnam Series. Here we discuss a geochemical implication of the data based on major element composition, trace element, rare earth element (REE), Sm-Nd and Rb-Sr isotope systematics of the boring cores in the granite gneiss area. The boring cores are granitic gneiss (including biotite gneiss) and amphibolite. The major and trace element compositions of granitic gneiss and amphibolite suggest that the protolith belongs to TTG (Tonalite-Trondhjemite-Granodiorite) and tholeiitic series, respectively. Chondrte-normalized REE patterns vary in LREE, HREE and Eu anomalies. The granitic gneiss and amphibolite have Sm-Nd whole rock age of $2,026{\pm}230(2{\sigma})$ Ma with an initial Nd isotopic ratio of $0.50979{\pm}0.00028(2{\sigma})$ (initial ${\epsilon}_{Nd}=-4.4$), which suggests that the source material was derived from old crustal material. Particularly, this initial ${\epsilon}$ Nd value belongs to the range of the geochemical evolution of Archean basement in North-China Craton, and also corresponds to the initial Nd isotope evolution line by Lee et al. (2005). In addition, chondrite-normalized REE pattern and initial Nd value of amphibolite are very similar to those of juvenile magma in crustal formation process.
Keywords
Yeongnam Massif; Muju area; Granitic gneiss; Amphibolite; Sm-Nd isotope system; North-China Craton; Initial Nd isotope ratio; Source material; Juvenile magma;
Citations & Related Records
연도 인용수 순위
  • Reference
1 이광식, 정창식, 박계헌, 장호완, 1997, 무주지역 각섬암의 지구화학 및 Sm-Nd 동위원소 연구. 자원환경지질, 30, 313-320
2 김건한, 음철헌, 2004, 유도결합 플라즈마 질량분광법에 (ICP-MS)에 의한 암석표준물질 중의 Lanthanids, Y, Th, U 분석. 한국지질자원연구원 논문집, 8, 43-53
3 Chen, J. F. and Jahn, B. M., 1998, Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics, 284, 101-133   DOI   ScienceOn
4 Hong, Y. K., Lee, S. G. and Lan, C. Y., 1996, Comparison between the Hongjesa granite and the Buncheon granite gneiss based on Sm-Nd age. Abstract of Annual Meeting of the Geological Society of Korea, 100
5 Jahn, B.-m., Wu, F., Capdevila, R., Martineau, F., Zhao, Z. and Wang, Y., 2001, Highly evolved juvenile granites with tetrad REE patterns: the Wuduhe and Baderzhe granites from the Great Xing'an Mountains in NE China. Lithos, 59, 171-198   DOI   ScienceOn
6 Keto, L. S. and Jacobsen, S. B., 1987, Nd and Sr isotopic variations of early Paleozoic oceans. Earth Planet. Sci. Lett., 84, 27-41   DOI   ScienceOn
7 Kim, J. and Cho, M., 2003, Low-pressure metamorphism and leucogranite magmatism, northeastern Yeongnam Massif, Korea: implication for Paleoproterozoic crustal evolution. Precam. Res., 122, 235-251   DOI   ScienceOn
8 Lee, S. G., Masuda, A. and Kim, H. S., 1994, An early Proterozoic leuco-granitic gneiss with the REE tetrad phenomenon. Chem. Geol., 114, 59-67   DOI   ScienceOn
9 Lee, S. R., Cho, M., Hwang, J. H., Lee, B-J., Lim, Y-B. and Kim, J. C., 2003, Crustal evolution of the Gyeonggi massif, South Korea: Nd isotopic evidence and implications for continental growths of East Asia. Precam. Res., 121, 25-34   DOI   ScienceOn
10 Masuda, A., 1975, Abundances of mono isotopic REE, consistentconsistent with the Leedey chondritic values. Geochem. J., 9, 183-184   DOI
11 Masuda, A., Nakamura, N. and Tanaka, T., 1973, Fine structure of mutually normalized rare earth patterns of chondrites. Geochim. Cosmochim. Acta, 37, 239-248   DOI   ScienceOn
12 Masuda, A., Kawakami, O., Dohmoto, Y. and Takenaka, T., 1987, Lanthanide tetrad effects in nature: two mutually opposite types, W and M. Geochem. J., 21, 119-124   DOI
13 O'Connor, J. T., 1965, A classification for quartz-rich igneous rocks based on feldspar ratio. U. S. Geol. Surv. Prof. Paper, 525B, 79-84
14 Ludwig, K. R., 1999, Isoplot/Ex(v.2.06)-A geochronological tool kit for Microsoft Excel, Berkley Geochronology Center, Special Publications No. 1a, 49p
15 Pearce, J. A., Harris, N. B. W. and Tindle, A. G., 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic Rocks. J. Petrol., 25, 956-983   DOI
16 Wu, F.-Y., Zhao, G., Wilde, S. A. and Sun, D., 2005, Nd isotopic constraints on crustal formation in the North China Craton. J. Asia. Earth Sci., 24, 523-545   DOI   ScienceOn
17 Lee, S. G., Shin, S. C., Jin, M. S., Ogasawara, M. and Yang, M. K., 2005, Two Paleoproterozoic strongly peraluminous granitic plutons (Nonggeori and Naedeokri granites) at the northeastern part of Yeongnam Massif, Korea: Geochemical and isotopic constraints in East Asian crustal formation history. Precam. Res., 139, 101- 120   DOI   ScienceOn
18 Irber, W., 1999, The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites, Geochim. Cosmochim, Acta, 63, 489-508   DOI   ScienceOn
19 Heier, K. S., 1973, Geochemistry of granulite facies rocks and problems of their origin. Philos. Trans. R. Soc. Lon., A273, 429-442
20 Chough, S.K., Kwon, S.-T., Ree, J.-H. and Choi, D.K., 2000, Tectonic and sedimentary evolution of the Korean Peninsula: a review and new view. Earth-Sci. Rev., 52, 175-235   DOI   ScienceOn
21 Lee, S. G., Lee, D. H., Kim, Y., Chae, B. G., Kim, W. Y. and Woo, N. C., 2003, Rare earth elements as an indicator of groundwater environment changes in a fractured rock system: Evidence from fracture-filling calcite. Appl. Geochem., 18, 135-143   DOI   ScienceOn
22 DePaolo, D. J., 1988, Neodymium isotope geochemistry. Springer-Verlag, 187p
23 Jahn, B-m., Zhou, X. H. and Li, J. L., 1990, Formation and tectonic evolution of southern China and Taiwan: isotopic and geochemical constraints. Tectnophyscis, 183, 145- 160   DOI   ScienceOn
24 Bau, M., 1999, Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochim. Cosmochim. Acta, 63, 67-77   DOI   ScienceOn
25 Lee, S. G., Kim, Y., Chae, B. G., Koh, D. C. and Kim, K. H., 2004, The geochemical implication of a variable Eu anomaly in a fractured gneiss core: application for understanding Am behavior in the geological environment. Appl. Geochem., 19, 1711-1725   DOI   ScienceOn
26 Jahn, B-m. and Zhang, Z. Q., 1984, Radiometric Ages (Rb- Sr, Sm-Nd, U-Pb) and REE geochemistry of Archean granulite gneisses from eastern Hebei Province, China. In Archrean Geochemistry (ed. A. Kroner, G.N. Hanson and A.M. Goodwin). Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 204-234
27 Wu, F.-Y., Sun, D., Li, H., Jahn, B-m. and Wilde, S., 2002, A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chem. Geol., 187, 143-173   DOI   ScienceOn
28 Bau, M., 1997, The lanthanide tetrad effect in high evolved felsic igneous rocks- A reply to the comment by Y. Pan. Contrib. Mineral. Petrol., 128, 409-412   DOI   ScienceOn
29 Cheong, C-S., Kwon, S.-T. and Park, K-H., 2000, Pb and Nd isotopic constraints on Paeoproterozoic crustal evolution of the northeastern Yeongnam massif, South Korea. Precam. Res., 102, 207-220   DOI   ScienceOn
30 Shimizu, H., Lee, S. G., Masuda, A. and Adachi, M., 1996, Geochemistry of Nd, and Ce isotopes and REE abundances inn Precambrian orthogneiss clasts from the Kamiaso conglomerate, central Japan. Geochem. J., 30, 57-69   DOI   ScienceOn
31 Bau, M., 1996, Controls on the fractionation of isovalent tarce elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contr. Mineral. Petrol., 123, 323-333   DOI   ScienceOn
32 이대성, 남기상, 1969, 지질도폭설명서(1:50,000 장기리). 국립 지질광물연구소, 33p
33 박계헌, 정창식, 이광식, 장호완, 1993, 태백산지역의 고기 화강암 및 화강편마암류에 대한 납 동위원소 연구. 지질 학회지, 29, 387-395
34 Lee, S. G., Masuda, A., Shimizu, H. and Song, Y. S., 2001, Crustal evolution history of Korean Peninsula in East Asia: The significance of Nd, Ce isotopic and REE data from the Korean Precambrian gneiss. Geochem. J., 35, 175-187   DOI   ScienceOn
35 Liu, S., Pan, Y., Xie, Q., Zhang, J., Li, Q. and Yang. B., 2005, Geochemistry of the Paleoproterozoic Nanging granitic gneissees in the Fuping Complex: implications for the tectonic evolution of the Central Zone, North China Craton. J. Asia. Earth Sci., 24, 643-658   DOI   ScienceOn
36 Wu, F.-Y., Jahn, B-m., Wilde, S. and Sun, D., 2000, Phanerozoic crustal growth: U-Pb and Sm-Nd isotopic evidence from the granites in northeastern China. Tectonophysics, 328, 89-113   DOI   ScienceOn