• Title/Summary/Keyword: grain refinement

Search Result 285, Processing Time 0.029 seconds

Evaluation of mechanical properties on friction stir lap jointed Al6061/HT590 alloys (겹치기 마찰교반접합 된 Al6061/HT590 합금의 기계적 특성 평가)

  • Kim, Eun-Hye;Lee, Kwang-Jin;Song, Kuk-Hyun
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.8-13
    • /
    • 2015
  • This study was carried out to evaluate mechanical properties of the jointed Al6061/HT590 alloys by friction stir welding (FSW). FSW was conducted under the conditions with tool rotating speed of 500 RPM and traveling speed of 300 mm/min., where Ar gas was introduced to prevent the materials from corrosion during the welding process. Electron back-scattering diffraction (EBSD) was used to characterize microstructures such as grain size, misorientation angle and crystal orientation. Evolution of intermetallic compounds in Al6061 during the process were examined in terms of morphology, size and aspect ratio at three distinct zones Al base material, heat affected zone and stir zone, where transmission electron microscope (TEM) was used. It was revealed that FSW gave rise to refinement of grains as well as growth of intermetallic compounds in Al6061. The morphological changes of intermetallic compounds exerted an influence on mechanical properties, resulting in occurrence of fracture in the part of the base material instead of the jointed parts (heat affected zone and stir zone). This study systematically evaluated the microstructural evolutions during the FSW for joining Al6061 with HT590 and their effect on mechanical properties.

Effect of Surface Modification by Friction Stir Process on Overlap Welded Inconel 718 Alloy (육성용접된 Inconel 718 합금의 마찰교반을 이용한 개질처리 효과)

  • Song, Kuk Hyun;Hong, Do Hyeong;Yang, Byung Mo
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.501-509
    • /
    • 2013
  • To evaluate the development of the microstructure and mechanical properties on surface modified and post-heattreated Inconel 718 alloy, this study was carried out. A friction stir process as a surface modification method was employed, and overlap welded Inconel 718 alloy as an experimental material was selected. The friction stir process was carried out at a tool rotation speed of 200 rpm and tool down force of 19.6-39.2 kN; post-heat-treatment with two steps was carried out at $720^{\circ}C$ for 8 h and $620^{\circ}C$ for 6 h in vacuum. To prevent the surface oxidation of the specimen, the method of using argon gas as shielding was utilized during the friction stir process. As a result, applying the friction stir process was effective to develop the grain refinement accompanied by dynamic recrystallization, which resulted in enhanced mechanical properties as compared to the overlap welded material. Furthermore, the post-heat-treatment after the friction stir process accelerated the formation of precipitates, such as gamma prime (${\gamma}^{\prime}$) and MC carbides, which led to the significant improvement of mechanical properties. Consequently, the microhardness, yield, and tensile strengths of the post-heat-treated material were increased more than 110%, 124% and 85 %, respectively, relative to the overlap welded material. This study systematically examined the relationship between precipitates and mechanical properties.

A Study of the FEM Forming Analysis of the Al Power Forging Piston (유한요소해석을 이용한 알루미늄분말단조 피스톤 성형해석에 관한 연구)

  • Kim, Ho-Yoon;Park, Chul-Woo;Kim, Hyun-Il;Park, Kyung-Seo;Kim, Young-Ho;Joe, Ho-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1543-1548
    • /
    • 2010
  • Powder metallurgy processes are used to form Net-Shape products and have been widely used in the production of automobile parts to improve its manufacture productivity. Powder-forging technology is being developed rapidly because of its economic merits and because of the possibility of reducing the weight of automobile parts by replacing steel parts with aluminum ones, in particular while manufacturing automotive parts. In the powder-forging process, the products manufactured by powder metallurgy are forged in order to remove any pores inside them. Powderforging technology can help expand the applications of powder metallurgy; this is possible because powder-forging technology enables the minimization of flashes, reduction of the number of stages, and possible grain refinement. At present, powder forging is widely used for manufacturing primary mechanical parts as in combination with the technology of powder forging of aluminum alloy pistons.

Nano Structure and Mechanical Properties of Rapidly Solidified Al81-(x+y)Si19NixCey Alloy (급속응고된 Al81-(x+y)Si19NixCey 합금의 나노조직과 기계적 특성)

  • 이태행;홍순직
    • Journal of Powder Materials
    • /
    • v.10 no.6
    • /
    • pp.406-414
    • /
    • 2003
  • In order to produce good wear resistance powder metallurgy Al-Si alloys with high strength, addition of glass forming elements of Ni and Ce in $Al_{81}$Si$_{19}$ alloy was examined using SEM, TEM, tensile strength and wear testing. The solubility of Si in aluminum increased with increasing Ni and Ce contents for rapidly solidified powders. These bulk alloys consist of a mixed structure in which fine Si particles with a particle size below 500 nm and very fine A1$_3$Ni, A1$_3$Ce compounds with a particle size below 200 nm are homogeneously dispersed in aluminum matrix with a grain size below 600 nm. The tensile strength at room temperature for $Al_{81}$Si$_{19}$, $Al_{78}$Si$_{19}$Ni$_2$Ce$_{0.5}$, and $Al_{76}$Si$_{19}$Ni$_4$Ce$_1$ bulk alloys extruded at 674 K and ratio of 10 : 1 is 281,521, and 668 ㎫ respectively. Especially, $Al_{73}$Si$_{19}$Ni$_{7}$Ce$_1$ bulk alloy had a high tensile strength of 730 ㎫. These bulk alloys are good wear-resistance bel ter than commercial I/M 390-T6. Specially, attactability for counterpart is very little, about 15 times less than that of the I/M 390-T6. The structural refinement by adding glass forming elements such as Ni and Ce to hyper eutectic $Al_{81}$Si$_{19}$ alloy is concluded to be effective as a structural modification method.d.tion method.

Corrosion Behavior of High Pressure Die Cast Al-Ni and Al-Ni-Ca Alloys in 3.5% NaCl Solution

  • Arthanari, Srinivasan;Jang, Jae Cheol;Shin, Kwang Seon
    • Corrosion Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.100-108
    • /
    • 2017
  • In this investigation corrosion behavior of newly developed high-pressure die cast Al-Ni (N15) and Al-Ni-Ca (NX1503) alloys was studied in 3.5% NaCl solution. The electrochemical corrosion behavior was evaluated using open circuit potential (OCP) measurement, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques. Potentiodynamic polarization results validated that NX1503 alloy exhibited lower corrosion current density ($i_{corr}$) value ($5.969{\mu}A/cm^2$) compared to N15 ($7.387{\mu}A/cm^2$). EIS-Bode plots revealed a higher impedance (${\mid}Z{\mid}$) value and maximum phase angle value for NX1503 than N15 alloy. Equivalent circuit curve fitting analysis revealed that surface layer ($R_1$) and charge transfer resistance ($R_{ct}$) values of NX1503 alloy was higher compared to N15 alloy. Immersion corrosion studies were also conducted for alloys using fishing line specimen arrangement to simultaneously measure corrosion rates from weight loss ($P_W$) and hydrogen volume ($P_H$) after 72 hours and NX1503 alloy had lower corrosion rate compared to N15 alloy. The addition of Ca to N15 alloy significantly reduced the Al3Ni intermetallic phase and further grain refinement may be attributed for reduction in the corrosion rate.

Formation and Hydrogen Absorption Properties of Intermetallic Mg-Ni Compound Nanoparticles (Mg-Ni 금속 간 화합물 나노입자의 형성과 수소저장 특성)

  • BAE, YOOGEUN;HWANG, CHULMIN;KIM, JONGSOO;DONG, XING LONG;KIM, SEWOONG;JUNG, YOUNGUAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.3
    • /
    • pp.238-245
    • /
    • 2017
  • Mg-Ni nanoparticles were synthesized by a physical vapor condensation method (DC arc-discharge) in a mixture of argon and hydrogen atmosphere, using compressed mixture of micro powders as the raw materials. The crystal phases, morphology, and microstructures of nanoparticles were analyzed by means of X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). It was found that the intermetallic compounds of $Mg_2Ni$ and $Mg_2Ni$ formed with existence of phases of Mg, Ni, and MgO in Mg-Ni nanoparticles. After one cycle of hydrogen absorption/desorption process (activation treatment), Mg-Ni nanoparticles exhibited excellent hydrogen absorption properties. $Mg_2Ni$ phase became the main phase by aphase transformation during the hydrogen treatments. The phenomenon of refinement of grain size in the nanoparticle was also observed after the hydrogen absorption/desorption processes, which was attributed to the effect of volume expansion/shrinkage and subsequent break of nanoparticles. Maximum hydrogen absorption contents are 1.75, 2.21 and 2.77 wt.% at 523, 573 and 623 K, respectively.

Addition effects of nanoscale NiO on microstructure and superconducting properties of MgB2

  • Ranot, Mahipal;Jang, S.H.;Oh, Y.S.;Shinde, K.P.;Kang, S.H.;Chung, K.C.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.37-40
    • /
    • 2016
  • We have investigated the addition effect of NiO magnetic nanoparticles on crystal structure, microstructure as well as superconducting properties of $MgB_2$. NiO-added $MgB_2$ samples were prepared by the solid-state reaction method. The superconducting transition temperature ($T_c$) of 37.91 K was obtained for pure $MgB_2$, and $T_c$ was found to decrease systematically on increasing the addition level of NiO. X-ray diffraction (XRD) analysis revealed that no substitution of Ni for Mg in the lattice of $MgB_2$ was occurred. The microstructural analysis shows that the pure $MgB_2$ sample consists of plate shape $MgB_2$ grains, and the grains get refined to smaller size with the addition of NiO nanoparticles. At 5 K, high values of critical current density ($J_c$) were obtained for small amount NiO-added $MgB_2$ samples as compared to pure sample. The enhancement in $J_c$ could be attributed to the refinement of $MgB_2$ grains which leads to high density of grain boundaries in NiO-added $MgB_2$ samples.

Effect of Al2Ca on Oxidation Resistance and Tensile Property of Al-5Mg Alloy (Al-5Mg 합금의 내산화성 및 인장특성에 미치는 Al2Ca의 영향)

  • Ha, Seong-Ho;Yoon, Young-Ok;Kim, Shae K.
    • Journal of Korea Foundry Society
    • /
    • v.34 no.6
    • /
    • pp.194-199
    • /
    • 2014
  • The effect of $Al_2Ca$ on the oxidation resistance and tensile property of Al-5Mg alloys was investigated. According to the TGA (Thermogravimetric analysis) result at $550^{\circ}C$ after 24hrs, the Al-5Mg alloy showed parabolic behavior with weight gain. On the other hand, there was almost no difference in the weight changes of the $Al_2Ca$ added Al-5Mg alloys during the oxidation. It was thought that the improvement of oxidation resistance in $Al_2Ca$ added Al-5Mg alloys might be due to the formation of a protective oxide layer with CaO and MgO on the surface. The microstructures of the alloys showed grain refinement with an increasing $Al_2Ca$ content. From the tensile test, the yield strength of the alloys were improved with an increasing $Al_2Ca$ content. The 0.07 mass%$Al_2Ca$ added Al-5Mg alloy showed similar elongation and increased strength, simultaneously. It was considered that the addition of $Al_2Ca$, which was superior in the oxidation resistance of Al, reduced the formation of Mg oxides and inclusions during the alloying. This, partly led to the improvement of tensile properties.

Influence of Target Manufacturing Condition on the Coercive Force and Effective Permeability of Permalloy (타게트 제조조건이 퍼멀로이 박막의 보자력 및 투자율에 미치는 영향)

  • 김현태;김상주;한석희;김희중;강일구;김인응
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.4
    • /
    • pp.319-325
    • /
    • 1994
  • Permalloy films were deposited by an RF magnetron sputtering method using several different targets which had been cold-rolled and annealed at various temperatures to give different microstructure and texture. The grain refinement occurs at high temperature annealing due to recrystallization and subsequently the initial (110) target texture transforms to the random texture. The coercive forces of thin films fabricated using targets which are not recrystallized are below 0.2 Oe in the AI pressure range of 1~5 mTorr and the lowest coercive force achieved is 0.07 Oe. The low value of coercive force, 0.25 Oe, is only obtained at the sputtering conditions of 400 W and 1 mTorr, and 300 W and 5 mTorr when recrystallized targets are used. The internal stress changes from compressive to tensile as the Ar pressure increases, the stress-free being at 5 mTorr. The changes of coercive force and permeability can be well interpreted by the differences from the composition and the internal stress.

  • PDF

Study on Optimal Welding Condition for Shipbuilding Steel Materials (조선강재의 최적 용접조건에 관한 연구)

  • Kim, Ok-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.128-133
    • /
    • 2011
  • In this study, the steel material for shipbuilding(LR-A class) was used, and FCAW was taken advantage of 3G attitude and they are welded by different welding ways. As a result of analyzing wave with welding monitoring system, the stable values are obtained which are the first floor(electronic current 164~182 A, voltage 24 V), the second floor(electronic current 174~190 A, voltage 22~25 V), the third floor(electronic current 158~188 A, voltage 22~25 V), and fourth floor(electronic current 172~184 A, voltage 22~25 V), at this time, the stable wave standard deviation and changing coefficient could be obtained. When the welding testing through nondestructive inspection was analyzed know defect of welding, there was no defect of welding in A, D, E, but some porosities in B, and slag conclusion near the surface in C, because the length of arc was not accurate, and the electronic current and voltage was not stable. After observing the change of heat affect zone through micro testing, each organization of floor formed as Grain Refinement, so welding part was fine, the distance of heat affect zone is getting wider up to change the values of the electronic current and voltage. As a result of degree of hardness testing, the hardness orders were the heat affect zone(HAZ), Welding Zone(WZ), and Base Metal(BM). When the distribution of degree of hardness is observed. B is the highest degree of hardness The reason why heat effect zone is higher than welding zone and base metal, welding zone is boiled over melting point($1539^{\circ}C$) and it starts to melt after the result of analysis through metal microscope, so we can know that delicate tissue is created at the welding zone. Therefore, in order to get the optimal conditions of the welding, the proper current of the welding and voltage is needed. Furthermore the precise work of welding is required.