• Title/Summary/Keyword: grain growth behavior

Search Result 284, Processing Time 0.029 seconds

Modeling of the Bainite Transformation kinetics in C-Mn-Mo-Ni Steel weld CGBAZ

  • Uhm, S.;Lee, C.;Kim, J.;Hong, J.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.11-14
    • /
    • 2002
  • A metallurgical model for bainite transformation kinetics in the coarse-grained heat affected zone(CGHAZ) on the basis of an Avrami-type equation was studied. Isothermal transformation tests were carried out to obtain the empirical equations for incubation time and Avrami kinetic constants for C-Mn-Mo-Ni steel. The effect of prior austenite grain size(PAGS) on the reaction rate of bainite was also investigated. Compared with experimental transformation behavior of bainite, the predicted behavior was in good agreement. It was also found that a smaller grain size retard the bainite reaction rate, contrary to the classical grain size effect and this is considered to be caused by constraint of grain size to bainite growth.

  • PDF

The effect of grain shape on grain growth behavior of oxide system during liquid phase sintering (산화물계의 액상소결에서 입자 형상이 입자성장 거동에 미치는 영향)

  • 조동희;박상엽
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.3
    • /
    • pp.127-131
    • /
    • 2001
  • The effect of grain shape on the grain growth behavior of oxide system was investigated as afunction of liquid content during liquid phase sintering. As a model system, the solid grains of $Al_{2}O_{3}$ and MgO were selected during liquid phase sintering, i.e. faceted shape of $Al_{2}O_{3}$ in $CaAl_{2}Si_{2}O_{8}$ liquid phase and spherical shape of MgO in $CaMgSiO_{4}$ liquid phase. The average grain size of MgO with spherical shape was decreased with increasing the liquid phase content, whereas that of $Al_{2}O_{3}$ with faceted shape was independent of liquid phase content. In the case of $Al_{2}O_{3}$ grains with faceted shape, which interfaces are expected to be atomically flat, are likely to grow by the interfacial reaction controled process. Whereas, in the case of MgO grains with spherical shape, which interface are expected to be atomically rough, are likely to grow by the diffusion controlled process.

  • PDF

Fatigue Crack Growth Behavior of Steel for High Speed Rail Crossing (고속철도 분기기용 강의 피로균열 진전거동)

  • Choi, Seong-Dae;Nam, Jeoung-Hag;Lee, Jong-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.205-210
    • /
    • 2001
  • Fatigue crack growth tests were carried out using high manganese cast steel under constant amplitude loading. Average crystal grain sizes of the material are $200{\mu}m$ and $1000{\mu}m$. For this material, ${\Delta}K_{th}$ is about $8MPa{\sqrt{m}}$ which is quiet large as compared to the general structural steels and the crack growth rate is lower than the general structural steels especilly in the low ${\Delta}K$ regsion. The reason of this behavior is crack closure due to fracture surface roughness and fretting oxide. The relationship between da/dN and the ${\Delta}K_{eq}$ was represented by narrow band regardless of the stress ratio.

  • PDF

Analysis of dislocation density in strain-hardened alloy 690 using scanning transmission electron microscopy and its effect on the PWSCC growth behavior

  • Kim, Sung-Woo;Ahn, Tae-Young;Kim, Dong-Jin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2304-2311
    • /
    • 2021
  • The dislocation density in strain-hardened Alloy 690 was analyzed using scanning transmission electron microscopy (STEM) to study the relationship between the local plastic strain and susceptibility to primary water stress corrosion cracking (PWSCC) in nuclear power plants. The test material was cold-rolled at various thickness reduction ratios from 10% to 40% to simulate the strain-hardening condition of plant components. The dislocation densities were measured at grain boundaries (GB) and in grain interiors of strain-hardened specimens from STEM images. The dislocation density in the grain interior monotonically increased as the strain-hardening proceeded, while the dislocation density at the GB increased with strain-hardening up to 20% but slightly decreases upon further deformation to 40%. The decreased dislocation density at the GB was attributed to the formation of deformation twins. After the PWSCC growth test of strain-hardened Alloy 690, the fraction of intergranular (IG) fracture was obtained from fractography. In contrast to the change in the dislocation density with strain-hardening, the fraction of IG fracture increased remarkably when strain-hardened over 20%. From the results, it was suggested that the PWSCC growth behavior of strain-hardened Alloy 690 not only depends on the dislocation density, but also on the microstructural defects at the GB.

Theoretical Study on the Consolidation Behavior and Mechanical Property for Molybdenum Powders (몰리브데늄 분말의 치밀화 거동 및 기계적 물성의 이론적 연구)

  • Kim, Young-Moo
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.214-220
    • /
    • 2008
  • In this study, consolidation behavior and hardness of commercially available molybdenum powder were investigated. In order to analyze compaction response of the powders, the elastoplastic constitutive equation based on the yield function by Shima and Oyane was applied to predict the compact density under uniaxial pressure from 100MPa to 700MPa. The compacts were sintered at $1400-1600^{\circ}C$ for 20-60 min. The sintered density and grain size of molybdenum were increased with increasing the compacting pressure and processing temperature and time. The constitutive equation, proposed by Kwon and Kim, was applied to simulate the creep densification rate and grain growth of molybdenum powder compacts. The calculated results were compared with experimental data for the powders. The effects of the porosity and grain size on the hardness of the specimens were explained based on the modified plasticity theory of porous material and Hall-Petch type equation.

High Temperature Deformation Behavior of Nano Grain W Produced by SPD-PM Process

  • Oda, Eiji;Ohtaki, Takao;Kuroda, Akio;Fujiwara, Hiroshi;Ameyama, Kei;Yoshida, Kayo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.126-127
    • /
    • 2006
  • In this study, nano grain W is fabricated by Severe Plastic Deformation-Powder Metallurgy (SPD-PM) process. W powder and W-Re powder mixtures are processed by SPD-PM process, a Mechanical Milling (MM) process. As results, a nano grain structure, whose grain size is approximately 20nm, is obtained in W powder after MM for 360ks. A nano grain W compact, whose grain size 630nm, has excellent deformability above 1273K. A nano grain W-10Re compact is composed of equiaxed grain, a grain growth is restrained and has low dislocation density after the large deformation; therefore it is considered that W-Re compact shows superplasticity.

  • PDF

CuO의 첨가량에 따른 Ni-Zn 페라이트의 소결 및 자기적 특성 변화

  • Kim, Seong-Tae;Kim, Jin-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.216-216
    • /
    • 2009
  • $(Ni_{1-x-y}Zn_xCu_y)Fe_2O_4(x=0.45,\;0{\leq}y{\leq}0.3)$ was synthesized by conventional ceramic processing, and the sintering behavior and the magnetic properties of which were studied as functions of CuO content and sintering temperature. Both the densification and the grain growth rates were significantly enhanced with the increase of CuO content, while abnormal grain growth occurred when the samples of $y{\geq}0.2$ were sintered above $950^{\circ}C$. Saturation magnetization and coercive field were mainly influenced by the densification and grain growth of the specimens, respectively.

  • PDF

The Surface Recrystallization Behavior of Single Crystal CMSX-2 (단결정 CMSX-2의 표면재결정 거동)

  • Jo, Chang-Yong;Na, Yeong-Sang;Kim, Hak-Min;Kim, Woo-Yeol;Bae, Cha-Hurn;Lee, Sang-Lae
    • 연구논문집
    • /
    • s.23
    • /
    • pp.15-27
    • /
    • 1993
  • The single crystal specimens were solidified by modified Bridgeman method. The surface recrystallized single crystal specimens were prepared by shot peening followed by heat treatment. The surface recrystallization begins at the dendrite cores on the surface. The recrystallized grains grew into the inner side of the specimen. The growth of recrystallized grains was inhibited by the pores and eutectic phases. The primary $\gamma'$ phases were dissolved at the recrystallized grain boundaries during the grain growth. The grain growth of recrystallized grains was similar to the cellular type transformation. No orientation relationships were found bewteen the recrystallized grains and the parent phase.

  • PDF