Browse > Article
http://dx.doi.org/10.4150/KPMI.2008.15.3.214

Theoretical Study on the Consolidation Behavior and Mechanical Property for Molybdenum Powders  

Kim, Young-Moo (Defense Material and Evaluation Technology Directorate, Agency for Defense Development)
Publication Information
Journal of Powder Materials / v.15, no.3, 2008 , pp. 214-220 More about this Journal
Abstract
In this study, consolidation behavior and hardness of commercially available molybdenum powder were investigated. In order to analyze compaction response of the powders, the elastoplastic constitutive equation based on the yield function by Shima and Oyane was applied to predict the compact density under uniaxial pressure from 100MPa to 700MPa. The compacts were sintered at $1400-1600^{\circ}C$ for 20-60 min. The sintered density and grain size of molybdenum were increased with increasing the compacting pressure and processing temperature and time. The constitutive equation, proposed by Kwon and Kim, was applied to simulate the creep densification rate and grain growth of molybdenum powder compacts. The calculated results were compared with experimental data for the powders. The effects of the porosity and grain size on the hardness of the specimens were explained based on the modified plasticity theory of porous material and Hall-Petch type equation.
Keywords
Molybdenum; Compaction; Sintering Behavior; Hardness;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 E. L. Baker, G. Voorhis, R. Campbell and C. Choi: Molybdenum and Molybdenum Alloys, A. Crowson, E. S. Chen, J. A. Chields and P. R. Subramanian (Ed.), TMS Symp. Proc., San Antonio (1998) 173
2 R. M. McMeeking and L. T. Khun: Acta Metall. Mater., 40 (1992) 961   DOI   ScienceOn
3 P. S. Satsangi, P. C. Sharma and R. Prakash: J. Mat. Process. Tech., 136 (2003) 80   DOI   ScienceOn
4 S. C. Lee and K. T. Kim: J. KSME A, 28 (2004) 1140 (Korean)
5 R. M. German: Sintering Theory and Practice, John Wiley and Sons, New York (1996) 528
6 Y. Kim, M.-H. Hong, S. H. Lee, E.-P. Kim, S. Lee and J.-W. Noh: Met. Mat. Int., 12 (2006) 245   DOI   ScienceOn
7 Y. S. Kwon and K. T. Kim: J. Korean Ceram. Soc., 31 (1994) 347 (Korean)
8 Y. S. Kwon, H. T. Lee and K. T. Kim: ASME J. Eng. Mater. Tech., 119 (1997) 366   DOI   ScienceOn
9 R. K. Bordia and G. W. Scherer: Acta Metall., 36 (1988) 2393   DOI   ScienceOn
10 K. J. A. Mawella, D. J. Standing, K. G. Cowan and J. S. Jones: Molybdenum and Molybdenum Alloys, A. Crowson, E. S. Chen, J. A. Chields and P. R. Subramanian (Ed.), TMS Symp. Proc., San Antonio (1998) 183
11 J. Besson and M. Abouaf: Acta Metall. Mater., 39 (1991) 2225   DOI   ScienceOn
12 S. Shima and M. Oyane: Int. J. Mech. Sci., 18 (1976) 285   DOI   ScienceOn
13 T. S. Srivatsan, B. G. Ravi, A. S. Naruka, L. Riester, M. Petraroli and T. S. Sudarshan: Powder Tech., 114 (2001) 136   DOI   ScienceOn
14 M. N. Rahaman, L. C. De Jonghe and R. J. Brook: J. Am. Ceram. Soc., 69 (1986) 53   DOI   ScienceOn
15 R. F. Cheney: Progress in Powder Metallurgy, A. S. Buffered (Ed.), Metal Powder Industries Federation, Princeton, 23 (1972) 143
16 G. S. Upadhyaya: Sintered Metallic and Ceramic Materials, John wiley and Sons, Chichester, (2000) 437
17 K. S. Hwang and H. S. Huang: Mater. Chem. Phys., 67 (2001) 92   DOI   ScienceOn
18 R. M. German and E. Olevsky: Int. J. Refract. Hard Mater., 23 (2005) 77   DOI   ScienceOn
19 P. Garg, S.-J. Park and R. M. German: Int. J. Refract. Hard Mater., 25 (2007) 16   DOI   ScienceOn
20 D. N. Lee and H. S. Kim: Powder Metallurgy, 35 (1992) 275   DOI
21 S. M. Doraivelu, H. L. Gegel, J. S. Gunasekera, J. C. Malas, J. T. Morgan and J. F. Thomas Jr: Int. J. Mech. Sci., 26 (1984) 527   DOI   ScienceOn
22 S.-H. Chung and Y. S. Kwon: J. Korean Powder Metall. Inst., 11 (2004) 399 (Korean)   DOI   ScienceOn
23 R. K. Bordia and G. W. Scherer: Acta Metall., 36 (1988) 2399   DOI   ScienceOn