• Title/Summary/Keyword: gradient systems

Search Result 843, Processing Time 0.028 seconds

Analytical solutions for density functionally gradient magneto-electro-elastic cantilever beams

  • Jian, Aimin;Ding, Haojiang
    • Smart Structures and Systems
    • /
    • v.3 no.2
    • /
    • pp.173-188
    • /
    • 2007
  • The general solution for two-dimensional magneto-electro-elastic media in terms of four harmonic displacement functions is proposed analytically. The expressions of specific solutions of magneto-electro-elastic plane problems with specific body forces are derived. Finally, based on the general solution in the case of distinct eigenvalues and the specific solution for density functionally gradient media, two kinds of beam problems with body forces depending only on the z or x coordinate are solved by the trial-and-error method.

Fast Multiuser Detection in CDMA Systems Using Gradient Guided Search (Gradient Guided 탐색을 이용한 고속 CDMA 다중사용자 검출)

  • Choi, Yang-Ho
    • Journal of Industrial Technology
    • /
    • v.24 no.B
    • /
    • pp.143-148
    • /
    • 2004
  • We present a fast algorithm for CDMA (code division multiple access) multiuser detection using the gradient guided search. The fast algorithm calculates the maximum likelihood (ML) metric so efficiently that it needs only O(K) additions in the presence of K users once some initialization is completed. The computational advantages of the fast algorithm over the conventional method are more noticeable as more iterations are required to obtain a suboptimal solution as in the initialization with matched filters.

  • PDF

Motion Detection Using Electric Field Theory

  • Ono, Naoki;Yang, Yee-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.823-826
    • /
    • 2000
  • Motion detection is an important step in computer vision and image processing. Traditional motion detection systems are classified into two categories, namely, feature based and gradient based. In feature based motion detection, features in consecutive frames are detected and matched. Gradient based methods assume that the intensity varies linearly and locally. The method, which we propose, is neither feature nor gradient based but uses the electric field theory. The pixels in an image are modeled as point charges and motion is detected by using the variations between the two electric fields produced by the charges corresponding to the two images.

  • PDF

Shielded High-Order Gradient Coil Design for Magnetic Resonance Spectroscopy and Imaging (자기공명분석과 영상촬영을 위한 차폐된 고차경사자계코일의 설계)

  • Oh, Chang-Hyun;Hilal, Sadek K.;Yi, Yun;Kim, Min-Gi
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1993 no.05
    • /
    • pp.45-48
    • /
    • 1993
  • High-order field gradients are useful for spatial localization of a volume of interest and dynamic range improvement of signal detection in NMR (Nuclear Magnetic Resonance) spectroscopy and imaging. This paper proposes a design method of shielded high-order gradient coils to reduce tile effect of eddy current on tile spectroscopy and imaging results. According to the experimental results, the shielded gradient coils produce less than 2 % eddy current compared to non-shielded coils. Two shielded $z^2$ gradient coils have been designed and constructed for 1.5 T whole-body and 3.0 T animal NMR imaging systems. Experimental results are in good agreement with the theoretically expected behavior and show the utility of the shielded high-order gradient coils.

  • PDF

Large-Scale Phase Retrieval via Stochastic Reweighted Amplitude Flow

  • Xiao, Zhuolei;Zhang, Yerong;Yang, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4355-4371
    • /
    • 2020
  • Phase retrieval, recovering a signal from phaseless measurements, is generally considered to be an NP-hard problem. This paper adopts an amplitude-based nonconvex optimization cost function to develop a new stochastic gradient algorithm, named stochastic reweighted phase retrieval (SRPR). SRPR is a stochastic gradient iteration algorithm, which runs in two stages: First, we use a truncated sample stochastic variance reduction algorithm to initialize the objective function. The second stage is the gradient refinement stage, which uses continuous updating of the amplitude-based stochastic weighted gradient algorithm to improve the initial estimate. Because of the stochastic method, each iteration of the two stages of SRPR involves only one equation. Therefore, SRPR is simple, scalable, and fast. Compared with the state-of-the-art phase retrieval algorithm, simulation results show that SRPR has a faster convergence speed and fewer magnitude-only measurements required to reconstruct the signal, under the real- or complex- cases.

Identification of Dynamic Systems Using a Self Recurrent Wavelet Neural Network: Convergence Analysis Via Adaptive Learning Rates (자기 회귀 웨이블릿 신경 회로망을 이용한 다이나믹 시스템의 동정: 적응 학습률 기반 수렴성 분석)

  • Yoo, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.9
    • /
    • pp.781-788
    • /
    • 2005
  • This paper proposes an identification method using a self recurrent wavelet neural network (SRWNN) for dynamic systems. The architecture of the proposed SRWNN is a modified model of the wavelet neural network (WNN). But, unlike the WNN, since a mother wavelet layer of the SRWNN is composed of self-feedback neurons, the SRWNN has the ability to store the past information of the wavelet. Thus, in the proposed identification architecture, the SRWNN is used for identifying nonlinear dynamic systems. The gradient descent method with adaptive teaming rates (ALRs) is applied to 1.am the parameters of the SRWNN identifier (SRWNNI). The ALRs are derived from the discrete Lyapunov stability theorem, which are used to guarantee the convergence of an SRWNNI. Finally, through computer simulations, we demonstrate the effectiveness of the proposed SRWNNI.

A New Approach For Off-Line Signature Verification Using Fuzzy ARTMAP

  • Hsn, Doowhan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.33-40
    • /
    • 1995
  • This paper delas with the detection of freehand forgeries of signatures based on the averaged directional amplitudes of gradient vetor which are related to the overall shape of the handwritten signature and fuzzy ARTMAP neural network classifier. In the first step, signature images are extracted from the background by a process involving noise reduction and automatic thresholding. Next, twelve directional amplitudes of gradient vector for each pixel on the signature line are measure and averaged through the entire signature image. With these twelve averaged directional gradient amplitudes, the fuzzy ARTMAP neural network is trained and tested for the detection of freehand forgeries of singatures. The experimental results show that the fuzzy ARTMAP neural network cna lcassify a signature whether genuine or forged with greater than 95% overall accuracy.

  • PDF

Computation of Gradient of Manipulability for Kinematically Redundant Manipulators Including Dual Manipulators System

  • Park, Jonghoon;Wangkyun Chung;Youngil Youm
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.8-15
    • /
    • 1999
  • One of the main reason advocating redundant manipulators' superiority in application is that they can afford to optimize a dexterity measure, for example the manipulability measure. However, to obtain the gradient of the manipulability is not an easy task in case of general manipulator with high degrees of redundancy. This article proposes a method to compute the gradient of the manipulability, based on recursive algorithm to compute the Jacobian and its derivative using Denavit-Hartenberg parameters only. To characterize the null motion of redundant manipulators, the null space matrix using square minors of the Jacobian is also proposed. With these capabilities, the inverse kinematics of a redundant manipulator system can be done automatically. The result is easily extended to dual manipulator system using the relative kinematics.

  • PDF

Two-Paralleled PWM Power Amplifiers to Generate Highly Precise Gradient Magnetic Fields in MRI Systems

  • Watanabe, Shuji;Boyagoda, Prasanna;Takano, Hiroshi;Nakaoka, Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.569-574
    • /
    • 1998
  • This paper presents a two-paralleled 4 quadrant DC chopper type PWM power conversion circuit in order to generate a gradient magnetic field in the Magnetic Resonance Imaging (MRI) system. This power amplifier is connected in parallel with the conventional 4-quadrant DC chopper using IGBTs at their inputs/outputs to realize further high-power density, high speed current tracking control, and to get a low switching ripple amplitude in a controlled current in the Gradient Coils (GCs). Moreover, the power conversion circuit has to realize quick rise/fall response characteristics in proportion to various target currents in GCs. It is proposed in this paper that a unique control scheme can achieve the above objective. DSP-based control systems realize a high control facility and accuracy. It is proved that the new control system will greatly enlarge the diagnostic target and improve the image quality of MRI.

  • PDF

Dynamic Caching Routing Strategy for LEO Satellite Nodes Based on Gradient Boosting Regression Tree

  • Yang Yang;Shengbo Hu;Guiju Lu
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.131-147
    • /
    • 2024
  • A routing strategy based on traffic prediction and dynamic cache allocation for satellite nodes is proposed to address the issues of high propagation delay and overall delay of inter-satellite and satellite-to-ground links in low Earth orbit (LEO) satellite systems. The spatial and temporal correlations of satellite network traffic were analyzed, and the relevant traffic through the target satellite was extracted as raw input for traffic prediction. An improved gradient boosting regression tree algorithm was used for traffic prediction. Based on the traffic prediction results, a dynamic cache allocation routing strategy is proposed. The satellite nodes periodically monitor the traffic load on inter-satellite links (ISLs) and dynamically allocate cache resources for each ISL with neighboring nodes. Simulation results demonstrate that the proposed routing strategy effectively reduces packet loss rate and average end-to-end delay and improves the distribution of services across the entire network.