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Computation of Gradient of Manipulability for Kinema-
tically Redundant Manipulators Including Dual
Manipulators System

Jonghoon Park, Wankyun Chung, and Youngil Youm

Abstract : One of the main reason advocating redundant manipulators’ superiority in application is that they
can afford to optimize a dexterity measure, for example the manipulability measure. However, to obtain the gra-
dient of the manipulability is not an easy task in case of general manipulator with high degrees of redundancy.
This article proposes a method to compute the gradient of the manipulability, based on recursive algorithm to
compute the Jacobian and its derivative using Denavit-Hartenberg paramcters onlv. To characterize the null
motion of redundant manipulators, the null space matrix using square minors of the Jacobian is also proposed.
With these capabilities, the inverse kinematics of a redundant manipulator system can be done automatically. The

result is easily extended to dual manipulator system using the relative kinematics.

Keywords : kinematically redundant manipulator, manipulability measure, recursive computation

I. Introduction

Imposing kinematic redundancy in robot manipulator
systcm seems to be one trend in robot application,
since kinematically redundant manipulators can provide
an easier way to overcome complex limitations from
which nonredundant manipulators suffer. The limita-
tions are manifested by the kincmatic singularity,
collision, joint limit, and so on. Nowadays, as the
manufacturing cost bhecomes lower and lower, the
more redundancy can be implemented by adding addi-
tional degrees ol freedom or by coordinating multiple
manipulator.

The main advantage of redundant manipulator lies
in optimizing a certain performance measure while ex—
ecuting a given task trajectory, using the null motion.
The main algorithm for optimizing inverse kinematics
is given by the well-known resolved motion rate
control with the gradient projection method [1]

a=7"(@) p+x(I=T () vmq) (1)
or the extended Jacobian method
("))

=\ UV mla) [

i’J )
dq

0

for the joint velocity g=R” and the task velocity
»=R”" where JeR™” is the Jacobian matrix, such
that Ag) ¢= b, J'(@eR™™ is the Moore-Penrose
pseudoinverse of Kg), Z(@eR™" (y=n—m) is a full-
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row rank mill space matrix such that K)Z7(g)=0.

In either case, as the redundancy becomes larger,
the terms appearing in (1) and (2) such as J. Z and
vm are difficult to get. As a matter of fact it is easy
to compute the Jacoblan J aulomatically using the
Denavit-Hartenberg (DH) parameters of the mani-
pulator.

Sirrilarly, the null space matrix Z can be computed
by

Z=[J{adi {JT} — det{/}}I] (3)

where J is partitioned to J=[/; /] with nonsingular
JieR™ ™ [4].

In the meantime, 1o compute a performance measure
is much more difficult, except a few simple measure.
Consider the manipuability measure [5] one of the
performance measure to avold the kinemalic singu-
larity, defined by

m(a) =V det {Xo)] (@)} (4)

In simple redundant manipulator system, it can be
svmbolicallv expressed and differentiated to derive the
gradient using nuwmerous available symbolic expression
manipulation packages. However our experience tells
that in the case of gencral manipulators with large
redundancy the symbolic derivation is frustraling, since
the result contains too many terms due to inefficient
simplification, and it has no flexibility which means
that, for example, addition of additional joint leads to
total reevaluation of the gradient.

In this article, we provide an algorithm to automati-
cally solve the inverse kinematics of a general redun-—
dant manipulator, including dual manipulator system,
using the DH parameters only. More specifically, the
recursive formulations of the Jacobian and the gradient
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Fig. 1. Schematic diagram of general dual mani-
pulators systern.

of the manipulability measure are provided, and ellcient
method to compute the null space bases matrix using
the square minor of the Jacobian is developed. Based
on the method, a simulation of dual nine degrees of
freedom manipulators will be provided.

II. Kinematic computation using DH parameters for
single manipulator
One of the most widely accepted method in model-
ing manipulator kinematics is the one by the Denavit
Hartenberg (DIT) notation [6]. The DH method beging
by consiructing the link transform, with a set of DH
parameters (e, d, @, 0,), by

TlALa) 5)
c(8) —s(0)ela) s(8)s(a) awx(d)
(0) o(0)cda) —c(8)(a) as(6)
0 s(a,) e(ay) d,
0 0 0 1

where ¢, is the joint variable, ie. ¢,=d, in case of
prismatic joint, and ¢,= &; in case of revolute joint,
and s( -) and c(-) denotes sin(-) and cos(*), re-
spectively.

Then each manipulator consists of a number of
links which is driven by the joint of the manipulator.
Hence by attaching one frame at each joint, numbered
from 0 (the base), 1, through = (the end-effcctor),
where = is the degrecs of freedom of the manipulator,
we can construct a homogeneous transform of the
end-effeclor, i.e. = -th coordinate frame denoted by
{ n) in Fig. 1 from the base frame denoted by {0}. In
general cases, the manipulator's base coordinate frame
{0} is not the same as the reference coordinate frame
{ref}, with respect to which the manipulator task is
specificd. Also, some tool, represented as {tool}, lo
perform a task is atltached at the end-effector frame
{#n}. To take into account these, one can introduce
additional two coordinate transformations, which are

Ty and Ty I the base is fixed and the tool does

not have no degrees of freedom, they are constant
homogeneous transformation. Therefore, the kinematic
modeling of a manipulator can be written as

releml(q)= 1-erT‘O' OTn(Q) " nTtooh g=R™ (6)

Then the inverse kinematics aims at solving ¢ for a
given T o 4(f such that

Tl D= T "T @) T ioute (7)

Directly solving (7) involves a case-by-case analysis
for each manipulator, and is not useful in redundaricy
utilization. Hence its linearized version is uscd to solve

g(H such that

el .
( rel xm'd(ﬂ) = T oll@ 7. “Toa(g) =R (8)
’ wtool.d(t)

where ™ x,=R® and ™ wey = R’ is the linear
and angular velocity of the ool coordinate frame {tool}

along and around the coordinate axis of {ref}
expressed with respect to the base frame {ref}. The 6

-by- # matrix ®/.wa(g) is called the manipulator
Jacohian and denoted by 7 wax(g). The m rows of the
manipulator Jacobian f max(g) sullicient for specifying
a current task can be selected and stacked to yield the
Jacobian, denoted also by J man(a),

i).d( =] wan(q) K.Z, ]MAN(C])ERMM,

T =R™"

(9

1. Jacobian computation

A standard technique to compute the manipulator
Jacobian matrix Jman(@) for a general spatial mani-
pulator turns out to be nonrecursive (e.g. Sce [6]),
which is not efficient.

To obtain a recursive formulation, the following
matrices (/; represenling the transformation from the
tool frame of the manipulator to each joint's [rame,
are recursively calculated by [71(8]

Un——l - ﬂA L_ooll (loa)

U =Usp - T'ATHG) (10b)
for i=#»n to =1, where
A TNy '
(8, s(8;) 0 —a; b
—s(8ycla) c(B)cla) s(a) —d.sla)
s(8)s(a) —cl8ps(e) oa) —dicla)
0 0 0 1 ]
Note that

[]1 . refA 0—1: refT t_oull (12)
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As a matter of fact, the matrices recursively com-
puted above is related to the hand Jacobian denoted by

Tran(@ €R%”, not the manipulator Jacobian itself.

The -th column of [ uano(¢), denoted by J g is
constructed by

T Paxo

G
(13)
Ho =[700) itai=0,

¢

n; 0; a; P;

where U,= for i=1+x. The manipulator

0001
Jacoblan matrix Juan(¢) is obtained by transforming

the reference frame of J yanp as

ref
7 ( 6]) —_ R tool( Q)
MAN [ 0 rLIR toal( q)

]JHAND(Q) (14)

Remark 2.1 : In case of a two degrees of freedom
planar manipulator, the manipulator Jacobian is

_[—hsi—lsw —lswe
I wa(a) [ hey+ heqy L ]

whereas the hand Jacobian is

Tawo(@=[ 5%, 5]

Note that while computing the Jacobian matrix re-
cursively, the homogeneous coordinate transform from
the reference frame to the tool frame is also computed.
This method of recursive computation of the Jacobian
matrix has already been developed, e.g. [8]. However,
the computation of the mamipulability seems to still
relies on some kind of symbolic calculation, which is
extremely difficult for general redundant manipulators
with many degrees of redundancy. Hence the manipu-
lability, one of the very popular kinematic measures, is
not easy to use for such manipulators. Instead, a
simple measure was devised as an alternative or no
measure was used. It is well known that proper opti-
mization of a suitable measure can guarantee a dex-—
trous motion in kinematically redundant manipulators.
As a matter of fact, many dexterity measures are
defined using the manipulator Jacobian [9]. Hence, the
gradient of such measures should involve the deriva-
tive of the manipulator Jacobian anyway. Then the
proposed recursive algorithm can help to achieve the
gradient of them. In this article, we propose the mani-
pulability of the Jacobian as an example. This will be
presented in the next section.

2. Manipulability computation

TFirst we provide the following lemmas on the
gradient of the manipulability.

Lemma 2.1 : The gradient of the manipulability of
]MAN(ZJ) and J yanp(q) are equal, ie.

9 det {J wan/ ‘Man} _ 0 det{/ nanp/ Tanp}
EFY 94y,

(15)

Lemma 2.2 @ The gradient of the manipulability
given in (4) is given hy

g—qﬂz =m(q) trace{%] AND (16)

when J ganp(e) has full row rank at g.

Hence, the gradient of the manipulability can be
a] HAND
[7([}1
recursive [formulation of the Jacobian, it is easy to
derive the following cquations for the derivative of

Jacobian. Similarly, its computation is based on the

computed when is computed. Using the

. . al;
recursive computation of 7 expressed as

I3

aU'rH-_l_ —

52, (17a)
au, : P
30, = if &<
au, 37TA (gD
3‘7!3 —Uf.}.] " a(]/g — if k=1 (17b)
OU; U im1 g, -y :
64/3 o afﬂe Az (QI) wh
where
o ) o) 00
a"7A ey _ — (B)a) —s(8Iea) 0 0
a8, c(8)s(a) s(8)sa) 00
0 0 00
a1 000 0
97 A (a) _ {000 —s(a)
ad; 000 —clay
000 0
Then 7-th column of 7315;/:1@ is constructed
o7 $anp 24 e
dge | O ifa=d (g)
ap; da
a ..—-— Z
faH_AND = | g, XateX G ifg=4,
qr
da,
g,
on, 9o, da, 9p;
au, dar dq, 0qr 9q;
where 30,
qp

0 0 0 0

1. Relative kinematic computation for dual mani-
pulator

There are many ways to coordinate a dual

manipulators system. One most popular ways is to
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toolf Dtaa.fg ([ )

(b) Coordination of the
relative motion

(a) Coordination of the
object motion

Fig. 2. Method of coordination with object by
cual manipulators.

coordinate them to realize a motion of an object
carried by them. We call this way of coordination as
the coordination of the object motion (See Fig. 2(a)).
For coordination of the object motion, the absolute
trajectory of the object is specified with respect to the
reference frame. The different way of coordination can
be realized by coordinating the dual manipulators so
as lo execute a task on an object. We call this
coordination method as the coordination of relative
motion (See Fig. 2(b)). For this coordination method,
the relative trajectory of the one manipulator with
respect to the other is specified. This method has
unique differences from the object motion coordination
in many aspects. Above all, the most important thing
iz that in this case the dual manipulators realize a
single redundant manipulator system, since the
absolute posture of the object is not of concern, but
the relative motion is important.

If the potential redundancy arising in a dual
manipulators system is to be exploited, the notion of
the relative kinematics is useful [8]. The velocity
relation of the relative kinematics is expressed as

p= eyl qz)( gé) (19)

where »<R” is the tool velocity of the second
manipulator with respect to the tool frame of the first
manipulator, and “,.p(gl, @) € R denoted
also by Jger, 18 the relative Jacobian with #, the
degrees of freedom of the first manipulator, #, that of
the second one, and m the dimension of the task for
the second one. In some expressions below, the single
vector g=(a", @2 e R™T? is ysed.
1. Relative Jacobian computation

Similarly, the relative Jacobian Jgeo is computed
based on recursive computation of Ul,’s and (2,'s
given by

U2 j341= A2 t_ooll (20a)

U2,=U2,., - A2, %q2) (20b)

for i=n2 to 7=1 downward, and
Ul,=U2;- °A2 3L - P41 4 (21a)
Uli1=Ul;+ T'AlLql)) (21b)

for =0 to i=#nl—1 upward. Then :-th column of
LT o = T g “%J2 ] s constructed by

2 o = [ ] if 2= a2,
(22)
oot E(?u]l = [DZ,XaZ, it ¢2;,= 62,
6221'
NG = [T Hal=a,
@3
NG = A da=e,
~al;—
nl; ol, al, 21,
where U1i=[ J and similarly for U2;.
0 0 0 1

Noting that

Ul nl * "l_lAl nl(q]- nl) N nlA]- tool = ol T ;::1»12 (24)

the original relative Jacobian 7w =Jre. With res-

pect to the tool [rame of the first manipulator is
obtained by

toollR toolZ( [1) 0 tOOE] !ooll(q) ; (25)

JreL(@) =
R ) 0 LmuR toolQ(Q)

3. Relative manipulability computation

As seen in (19), the singularity of the relative
Jacobian Jgrei(g) impose many limitations on validity
and smoothness of the Inverse kinematic solutions,
just as the manipulability does for a single mani-
pulator. Hence, one of the natural mecasures for dual
manipulators systems in the rclative kinematics
configuration is the relative manipulability defined by

m(gl, )=V det (Jper(al, @) %erlal, @)},  (26)

To extremize the relative manipulability during the
motion of the dual manipulators system, the gradient
should be computed. It can be shown that it is
computed as

3
&

<
3
I
< U
SR

|

&
Q)

and its element is given by

tool2
d ] tooll

% = m(ql,q2) trace T w2y Tmn} @n
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and similarly for ¢2,.

The prool is similar in the gradient of the single
manipulator case. Therefore the computation of the
detvative of the relative Jacobian “"%J . counter—
part of the hand Jacobian in single manipulator sys-
tern, is necessary and its recursive computation is
formulated as follows:

alZ,

= [Ka) _1( 17) 32)
(23] (2 ¢
based on the kinematically decoupled joint space
decomposition [10], where #eR(»=n—m) is the de-
gired null velocity given by

n=xZ(Q)Vm (33)

The matrices R(g)eR™™ and MgeR™" are ob-
tained by the singular value decomposition of Kg)

J=ULZ0[RNT (34)

where Y= diag{g,--,0,} is the diagonal matrix of the

singular values of J. It is easy to scc that the
manipulability (4) is cqual to [5]

m(q) = 010" O, (35

The null space matrix Z(g)sR"™* given in (3) can
be computed using only square minors of the Jacobian
hy the following lemma.

Lemma 4.1 : Let J be rearranged so that the first
square minor is nonsingular. Then the element of the
null space matrix Z is derived by

Z;“j — det[f(l) ]'(]' 1) ](wn+z) ](j+1) ](m)]

Z,',,.,H_i = — det[j(l) ]’(1_1) ](I'J ](/+1) .. ]-(m)]

for 1=<{<y» and 1<j<m, with the other elements set
to be zero, where J denotes the i—th column of the
matrix J.

Remark 4.1 @ For example, consider the 3-by-5%
Jacobian matrix whose first three columns are nonsin-

gular. Then the null space bases matrix ZeR ¥ by

" the above Lemma is given by

“odl, = (28a)
OUL 41 . .
8:11;3 _’O - if k>2
UL oy _ 0 07T ALY .,
odl, ul; 7l if k=1 (28b)
c?Ul,.H _ aUlz L oiml . .
aqlk - aql"t Al, i k<Z
where
L2 4y _ ﬂﬂl — .
ddl, =0, 3, =0 (29)
and
al2; . .
a2, =0 if &4
olR; _ 942 Na2) .., .
62, Pt o, k= (802)
al2, _ ol2,., L iml g —1 . .
a2y a g2, A2 if k>
U ar _ OUL .,
ank - 8112& " A].z (30b)
where
a(-—/2712+1 — O
dq2 (31
ouly U2y g, 1w
aqz}L - 36]21; AZ base A]- base-
o Loolzjmuu (9 tOO12]tooll can

Then 7-th column of S and 2,

be similarly defined using (18) in the single mani-
pulator system.

S0 far, the method to analytically compute the
gradient of the manipulability measure for general re—
dundant manipulator systems including dual manipula—
tors system was discussed. To incorporate the gradi-
ent into the inverse kinematic solution, the following
section will briefly explain one method of efficient
inverse kinematics algorithms.

VI. Inverse kinematics of redundant manipulator
system
The inverse kinematics based on (1) can be equiva-
lently expressed as

7 = [ROUDRQ) ™" Ma)(Z DN g)) —1]( i)

Z:_—[Zu Zyp Zn Zuy 0

21 z 2%

Table 1. DH parameters

Z g ] Z a5

of the right arm.

# 1 213 ) 4 5 6 7 3 9
alm) | 0 L1010 0 0 0 0 Iy
d(m) 11 0 0 0 13 O 14 O 0
(=) -90]90 [-90]|-90] 90 | 90 | -90 | 90 0
(=) -45| 0 |45] 0 |45 90| 0 |-90] 0

Table 2. DH parameters of the left arm

# 1 2 3 4 5 6 7 8 9

am)| 0 I 0 0 0 0 0 0 Iy
dim)| -4 | 0 0 0 |-L| 0 |~4| O 0
a( =) -901 90 | -90| 90 | 90 | 90 | -90 | -90
<) 45| 0 45| O |[-45|-90| 0 | 90
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Fig. 3. A 9 dof manipulator.
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oge
0016
0014
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0

(b) Manipulability variation

(a) Joint trajectory

Fig. 4. Self-motion of a 9 dof arm.

where

Zy =Zy=—det{[JV TP ]9}

Zy = det{[J¥ J® JOL
Zy = det{[JY 7@ 9L
Zy = det{[7® JO O
Zp = det{[7V IO 91} (36)
Zy = aet{[JV O 7O} 5

V. Numerical example

A nine degrees of freedom manipulator shown in
Fig. 3 whose DH parameters are summarized in Table
1 is simulated. The arm is commanded to do
self-motion using (33) to focus on the ability of
manipulability optimization. It was shown that the null
motion generate by the gradient projection method
drives the arm toward a local extremum asympto—
tically[11]. The manipulability was shown in Fig. 4,
which verifies that the arm converges to a (local)
maximum of the manipulability as shown in Fig. 4.

Now a 9 dof left manipulator was added to coor-
dination task in relative kinematics method. The DH
parameters are shown in Table 2. Two manipulators,
the left of which grips the sphere object and the right

o .\ . . Pt
t\\ gl \’,135’3,71/,\ [
o Ll
P

vy
) Vo

Fig. 5 A dual manipulator system employing two
9 dof manipulator.

q tcegl

1
|
1
q [degy

(a) Joint trajectory of the (b) Joint trajectory of

right one the left one
65 "
(1)
B osnt
;:1; B
é ay
.
35
o 0z Ter Tos e T

1

(d) Optima
configuration

(c) Relative manipulability
variation

Fig. 6. Self-motion of a dual manipulator system
employing two 9 dof manipulators.

of which is to exccute some task, are shown in Fig. b
at their initial configuration. To find a maximum
mamnipulability configuration, the self-motion using the
gracient of the manipulability was taken. Hence,
currently the desired relative task velocity is zero, ie.

74=0 Thanks to the analvtic recursive feature of the
proposed computational method, no difficulty arises in
implementing relative inverse kinematics ol the dual
manipulators system. The results are shown in Fig. 6.

VI. Conclusion
Till now, for general type of redundant manipulators
with arbitrary degrees of redundancy, calculation of
the gradient of various dexterity measures, for
example, the manipulability measure, is much difficult,
since there are no methods available (o compule it
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analytically. We have developed an algorithm to recur—
sively compute the Jacobian and the dervative of
Jacobian, and the gradient of the manipulability mea
sure is automatically computed using them. The
algorithm is shown to be easily extended to relative
kinematics of dual manipulator system. Based on the
algorithm, the gradient of a different dexterity measure
can be obtained. Using these algorithms, the inverse
kinematics of any redundant manipulator system can
be executed automatically with the capability of
performance measure optimization. A simulation with a
nine degrees of freedom spatial manipulator and a dual
manipulator system employing two 9 degrees of
freedom spatial manipulators exhibited the expected
ease in implementing the inverse Kinematic task.
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Appendix : A. Proof of Lemma 2.1 and 2.2
Using the derivative formula of the determinant
function

Lﬂta{xﬂﬁ = trace{% adj {A}}

it is easy to show that

3 det {J man ran)
8q &

_ oJ man/ TMAN
= trace — dg.
dr

adj {7 yan/ TMAN}]

_ T 3] manS Man T -1
= det {J manJ Man} trace a5 (7 man “Man)

= det {J pan/ Man) trace{ _/;91\;:\1\1 T 5van(T masd uan) o
a4 _
+J mMan ]5 0 (f Mand MAN) 1}

= 2 det {] M.AN] MAN} trace{ JéMAN
e

Tan(J vand an) _I}
(37

where trace {AB)=trace {BA} and traceld +B}=
trace {A} + trace {B} are used.

Note that
¢ 3] man -1
race|— 5. J MAN(] manS MAN)

]HAND — 2 T T }-l- trace[ g;"; TT] (383

= trace

= frace {
[

where T=[ = Rual@ " 0 ], since
R |nol((1)
0T 7| _ aT _ ddet{T} _
trace[ 34, T ] trace[ 90 ] 3a, 0,

and tracer{'} is invariant under the similarity trans-
form, as well as det{-}. From (37) and (38), we have

3 det {7 man/ TI;IIAN}
aqlz

=2 det {J gann/ Hanp) trace[ ]aP;AND

_ 9 det {J panp/ Hanp}
aq/z

I HAND]

which is the proof of Lemma 2.1

Since
_dm _ 1 a det {J mand an}
G 2V det {7 yvand haan) dqp

=y det {J nano/ Hann} trace[ ]a}g;m J HAND]
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it proves Lemma 2.2.
Appendix : B. Proof of Lemma 4.1
It is obvious for Z, 4+, from (3). The proof of Z,;

is easy by careful manipulation of J¥ adi (7{}. Observe
that

UD) p; = Times
(adi T}, = (=1)’""0 det{ T;,}

where 7,, is thc matrix obtained by deleting j-th
row and g-th column of /. Then for 1=p=<r and
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which concludes Lemma 4.1
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