• Title/Summary/Keyword: gradient model

Search Result 1,601, Processing Time 0.035 seconds

Numerical study of compression waves passing through two-continuous ducts (두 연속 덕트를 전파하는 압축파의 수치해석적 연구)

  • Kim, Hui-Dong;Heo, Nam-Geon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.823-831
    • /
    • 1998
  • In order to investigate the impulsive noise at the exit of high-speed railway tunnel and the pressure transients inside the tunnel, numerical calculations using a Total Variation Dimishing difference scheme were applied to axisymmetric unsteady compressible flow field. Some compression wave forms were assumed to model the compression wave produced in real high-speed railway tunnel. The numerical data were extensively explored to analyze the peak over-pressure and maximum pressure gradient in the pressure wavefront. The effect of the distance and cross-sectional area ratio between two-continuous ducts on the characteristics of the pressure waves were investigated. The peak over-pressure inside the second duct decreases for the distance and cross-sectional area ratio between two tunnels to increase. The peak over-pressure and maximum pressure gradient of the pressure wavefront inside the second duct increase as the maximum pressure gradient of initial compression wave increases. The present results were qualitatively well agreed with the results of the previous shock tube experiment.

Microfluidic immunoassay using superparamagnetic nanoparticles in an enhanced magnetic field gradient (강화된 자기장 구배 하에서 나노자성입자를 이용한 미세유체 기반의 면역 측정)

  • Hahn, Young-Ki;Kang, Joo-H.;Kim, Kyu-Sung;Park, Je-Kyun
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.158-163
    • /
    • 2006
  • This paper reports a novel immunoassay method using superparamagnetic nanoparticles and an enhanced magnetic field gradient for the detection of protein in a microfluidic device. We use superparamagnetic nanoparticles as a label and fluorescent polystyrene beads as a solid support. Based on this platform, magnetic force-based microfluidic immunoassay is successfully applied to analyze the concentration of IgG as model analytes. In addition, we present ferromagnetic microstructure connected with a permanent magnet to increase magnetic flux density gradient (dB/dx, ${\sim}10^{4}$ T/m), which makes limit of detection reduced. The detection limit is reduced to about 1 pg/mL.

Numerical study on heat transfer and densification for SiC composites during thermal gradient chemical vapour infiltration process

  • Ramadan, Zaher;Im, Ik-Tae
    • Carbon letters
    • /
    • v.25
    • /
    • pp.25-32
    • /
    • 2018
  • In this study, a thermal-gradient chemical vapor infiltration (TG-CVI) process was numerically studied in order to enhance the deposition uniformity within the preform. The computational fluid dynamics technique was used to solve the governing equations for heat transfer and gas flow during the TG-CVI process for two- and three-dimensional (2-D and 3-D) models. The temperature profiles in the 2-D and 3-D models showed good agreement with each other and with the experimental results. The densification process was investigated in a 2-D axisymmetric model. Computation results showed the distribution of the SiC deposition rate within the preform. The results also showed that using two-zone heater gave better deposition uniformity.

Forced vibration response in nanocomposite cylindrical shells - Based on strain gradient beam theory

  • Shokravi, Maryam
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.381-388
    • /
    • 2018
  • In this paper, forced vibration of micro cylindrical shell reinforced by functionally graded carbon nanotubes (FG-CNTs) is presented. The structure is subjected to transverse harmonic load and modeled by beam model. The size effects are considered based on strain gradient theory containing three small scale parameters. The mixture rule is used for obtaining the effective material properties of the structure. Based on sinusoidal shear deformation theory of beam, energy method and Hamilton's principle, the motion equations are derived. Applying differential quadrature method (DQM) and Newmark method, the frequency curves of the structure are plotted. The effect of different parameters including, CNTs volume percent and distribution type, boundary conditions, size effect and length to thickness ratio on the frequency curves of the structure is studied. Numerical results indicate that the dynamic deflection of the FGX-CNT-reinforced cylindrical is lower with respect to other type of CNT distribution.

A new optimization method for improving the performance of neural networks for optimization (최적화용 신경망의 성능개선을 위한 새로운 최적화 기법)

  • 조영현
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.12
    • /
    • pp.61-69
    • /
    • 1997
  • This paper proposes a new method for improving the performances of the neural network for optimization using a hyubrid of gradient descent method and dynamic tunneling system. The update rule of gradient descent method, which has the fast convergence characteristic, is applied for high-speed optimization. The update rule of dynamic tunneling system, which is the deterministic method with a tunneling phenomenon, is applied for global optimization. Having converged to the for escaping the local minima by applying the dynamic tunneling system. The proposed method has been applied to the travelling salesman problems and the optimal task partition problems to evaluate to that of hopfield model using the update rule of gradient descent method.

  • PDF

Analytical wave dispersion modeling in advanced piezoelectric double-layered nanobeam systems

  • Ebrahimi, F.;Haghi, P.;Dabbagh, A.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.175-183
    • /
    • 2018
  • This research deals with the wave dispersion analysis of functionally graded double-layered nanobeam systems (FG-DNBSs) considering the piezoelectric effect based on nonlocal strain gradient theory. The nanobeam is modeled via Euler-Bernoulli beam theory. Material properties are considered to change gradually along the nanobeams' thickness on the basis of the rule of mixture. By implementing a Hamiltonian approach, the Euler-Lagrange equations of piezoelectric FG-DNBSs are obtained. Furthermore, applying an analytical solution, the dispersion relations of smart FG-DNBSs are derived by solving an eigenvalue problem. The effects of various parameters such as nonlocality, length scale parameter, interlayer stiffness, applied electric voltage, relative motions and gradient index on the wave dispersion characteristics of nanoscale beam have been investigated. Also, validity of reported results is proven in the framework of a diagram showing the convergence of this model's curve with that of a previous published attempt.

Vibration analysis of magneto-flexo-electrically actuated porous rotary nanobeams considering thermal effects via nonlocal strain gradient elasticity theory

  • Ebrahimi, Farzad;Karimiasl, Mahsa;Mahesh, Vinyas
    • Advances in nano research
    • /
    • v.7 no.4
    • /
    • pp.223-231
    • /
    • 2019
  • In this article the frequency response of magneto-flexo-electric rotary porous (MFERP) nanobeams subjected to thermal loads has been investigated through nonlocal strain gradient elasticity theory. A quasi-3D beam model beam theory is used for the expositions of the displacement components. With the aid of Hamilton's principle, the governing equations of MFERP nanobeams are obtained. Further, administrating an analytical solution the frequency problem of MFERP nanobeams are solved. In addition the numerical examples are also provided to evaluate the effect of nonlocal strain gradient parameter, hygro thermo environment, flexoelectric effect, in-plane magnet field, volume fraction of porosity and angular velocity on the dimensionless eigen frequency.

An iterative method for damage identification of skeletal structures utilizing biconjugate gradient method and reduction of search space

  • Sotoudehnia, Ebrahim;Shahabian, Farzad;Sani, Ahmad Aftabi
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.45-60
    • /
    • 2019
  • This paper is devoted to proposing a new approach for damage detection of structures. In this technique, the biconjugate gradient method (BCG) is employed. To remedy the noise effects, a new preconditioning algorithm is applied. The proposed preconditioner matrix significantly reduces the condition number of the system. Moreover, based on the characteristics of the damage vector, a new direct search algorithm is employed to increase the efficiency of the suggested damage detection scheme by reducing the number of unknowns. To corroborate the high efficiency and capability of the presented strategy, it is applied for estimating the severity and location of damage in the well-known 31-member and 52-member trusses. For damage detection of these trusses, the time history responses are measured by a limited number of sensors. The results of numerical examples reveal high accuracy and robustness of the proposed method.

Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities

  • Fenjan, Raad M.;Ahmed, Ridha A.;Alasadi, Abbas A.;Faleh, Nadhim M.
    • Coupled systems mechanics
    • /
    • v.8 no.3
    • /
    • pp.247-257
    • /
    • 2019
  • Fee vibrational characteristics of porous steel double-coupled nanoplate system in thermo-elastic medium is studied via a refined plate model. Different pore dispersions called uniform, symmetric and asymmetric have been defined. Nonlocal strain gradient theory (NSGT) containing two scale parameters has been adopted to stablish size-dependent modeling of the system. Hamilton's principle has been adopted to stablish the governing equations. Obtained results from Galerkin's method are verified with those provided in the literature. The effects of nonlocal parameter, strain gradient, foundation parameters, porosity distributions and porosity coefficient on vibration frequencies of metal foam nanoscale plates have been examined.

Performance Comparison of Machine-learning Models for Analyzing Weather and Traffic Accident Correlations

  • Li Zi Xuan;Hyunho Yang
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.3
    • /
    • pp.225-232
    • /
    • 2023
  • Owing to advancements in intelligent transportation systems (ITS) and artificial-intelligence technologies, various machine-learning models can be employed to simulate and predict the number of traffic accidents under different weather conditions. Furthermore, we can analyze the relationship between weather and traffic accidents, allowing us to assess whether the current weather conditions are suitable for travel, which can significantly reduce the risk of traffic accidents. In this study, we analyzed 30000 traffic flow data points collected by traffic cameras at nearby intersections in Washington, D.C., USA from October 2012 to May 2017, using Pearson's heat map. We then predicted, analyzed, and compared the performance of the correlation between continuous features by applying several machine-learning algorithms commonly used in ITS, including random forest, decision tree, gradient-boosting regression, and support vector regression. The experimental results indicated that the gradient-boosting regression machine-learning model had the best performance.